Geometry instructor: Laurel Langford office # 206F NH office phone x3119 office hours: MWF at 9, and R at 11 and 12. web page: http://langfordmath.com

Some axioms and theorems (C.E. Burgess)

Axiom 1 Every line is a non-empty set of points.Axiom 2. There exist at least two pointsAxiom 3. If A and B are two points*, then there is a line which contains both A and B*This sentence structure should be interpreted to imply that A and B are not the same point.Axiom 4. If *l* is a line, then there is a point which does not belong to *l*.

**Question: what is the smallest example of a space that satisfies axioms 1-4?

Thm. 1. Every point belongs to at least two lines

Thm. 2. There exist at least 3 points

Thm. 3. There exist at least 3 lines

Thm 4. If there exists only 3 points, and each line contains at least one point, then there do not exist more than 6 lines.

Axiom 5. If A and B are two points, there do not exist two lines such that each of them contains both A and B.

Defn: Two sets *intersect* if they share at least one element. Two lines *intersect* if they share at least one point.

Thm. 5: If two lines intersect, then their intersection is a point.

Axiom 6. If L is a line, and P is a point that does not belong to L, then there do not exist two lines which contain P and do not intersect L

Defn. Two lines are <u>parallel</u> to each other if they do not intersect.

Thm. 6: If each of two lines L and M are parallel to a third line N, then L and M are parallel.

Thm. 7. If the lines L and M are parallel, and line N intersects L (and is different from L), then N intersects M.

Axiom 7. If L is a line and P is a point that does not belong to L, then there exists a line which contains P and is parallel to L.

Thm. 8. Every line contains at least two points

Thm. 9. No line is a proper subset of a line

Thm. 10. There exist at least 4 points.

Thm. 11. There exist 4 points such that no line contains 3 of them.

Thm. 12. Every point belongs to at least 3 lines.

Thm. 13. There exist at least 6 lines.

Examples to find:

- a. A space with only 4 points
- b. A space with only 6 lines
- c. A space where no point belongs to more than 3 lines
- d. A space where some one consists of only 2 points
- e. A finite space with more than 4 points
- f. A space that satisfies any 6 of the axioms, but not does not satisfy the remaining axiom.

Note: you may use algebra and the properties of real numbers.

Defn. Points are *collinear* of they are a subset of the same line.

Axiom 8: Given point A and point B*, there is a unique non-negative number $\rho(A, B)$ which is the *distance* from A to B. *A and B are allowed to be the same point.

Axiom 9: For any points A and B, $\rho(A, B) = \rho(B, A)$

Axiom 10: Given point A and point B $\rho(A, B) = 0$ if and only if A = B.

Axiom 11: If points A, B, and C are non-collinear points, then $\rho(A, B) + \rho(B, C) > \rho(A, C)$

Example: Choose randomly an example from the set previously provided. Define $\rho(A, B) = 0$ if A=B and $\rho(A, B) = 1$ if $A \neq B$. Does ρ satisfy axioms 8-11?

Defn, A point *B* is between two points *A* and *C* if it is different from both *A* and *C* and $\rho(A,B) + \rho(B,C) = \rho(A,C)$. This relationship will be denoted *A*-*B*-*C*.

Thm. 14. If a point *B* is between points *A* and *C* then *A*, *B*, and *C* are collinear.

Thm 15. If the point *B* is between two points *A* and *C*, then *C* is not between *A* and *B*.

Thm. 16. If the point *B* is between two points *A* and *C*, then *B* is also between *C* and *A*.

Axiom 12. If *A* and *B* are two points and *r* is a positive number, then there is a point *C* such that A-*B*-*C* and $\rho(B,C) = r$

Thm. 17. Every line contains at least 4 points

Thm. 18. If L is a line and A is a point of L, then there exist two points B and C of L such that B-A-C.

Thm 19. If *L* is a line and *A* is a point of *L*, then there exist two points *B* and *C* of *L* such that *B*-A-C.

Defn. A set consisting of four points A, B, C, and D is said to have the <u>order</u> A-B-C-D if A-B-C, B-C-D, A-C-D, A-B-D and $\rho(A,B) + \rho(B,C) + \rho(C,D) = \rho(A,D)$.

Thm. 20. A, B, C, D have order A-B-C-D if and only if D-C-B-A.

Thm 21. If four points have an order, then they are collinear.

Axiom 13. Every collinear set of 4 points has an order.

Thm 22. If A, B, and C are three collinear points, then one of them is between the other two.

Thm. 23. If A-B-C and B-C-D then A-B-D and A-C-D

Thm. 24. If A-B-C and A-C-D then A-B-D and B-C-D

Thm. 25. If A-B-D and A-C-D, then either B=C or A-B-C or A-C-B

Thm. 26. If A-B-C and A-B-D then either C=D or B-C-D or B-C-D.

Thm. 27. If A and B are two points, then there is a point between them.

Thm. 28. There do not exist 4 collinear points A, B, C, D, such that $\rho(A, B) = \rho(A, C) = \rho(A, D)$

Thm 29. If A, B, and C are points (not necessarily distinct), then $\rho(A, B) + \rho(B, C) \ge \rho(A, C)$

Thm 30. Every line contains infinitely many points

Thm 31. There is a 1-1 order preserving correspondence between the points of a line and the real numbers.

Defn. A set R of points is said to be a *ray* if there exist two points A and B such that a point X belongs to R if and only if one of the following is satisfied

- a. X=A
- b. X=B
- c. A-X-B
- d. A-B-X

The point A is called a *starting point* of R. This ray can be denoted AB.

Thm. 32. No ray has two starting points.

Thm. 33. Every ray is a proper subset of a line.

Thm. 34. No ray is a line.

Thm. 35. If A is a point of a line L, then there exist two and only two rays which are subsets of L and have A as a starting point.

Thm. 36. If X and Y are two points of a ray R, then the starting point of R is not between X and Y.

Thm. 37. If C is a point of the ray \overrightarrow{AB} , and $C \neq A$ then $\overrightarrow{AC} = \overrightarrow{AB}$

Defn. If A and B are two points, then the set of all points between A and B is called an *open interval*, and the set consisting of A and B together with all points between A and B is called a *closed interval* and a segment and can be written \overline{AB} . A and B are the *endpoints* of the interval or segment

Thm. 38 No open interval is a closed interval.

Thm. 39. Every interval is a proper subset of a line

Thm. 40. No interval is a line.

Thm. 41. No interval is a ray.

Note: Thm. 38 is not true for spaces which satisfy only axioms 1-11.

Thm. 42. No interval has more than two endpoints.

Defn. A point *C* is a *midpoint* of an interval if $\rho(A, C) = \rho(C, B)$ and *A*-*C*-*B*.

Thm. 43. Every interval has one and only one midpoint.

Defn. A set of points is said to be an angle if H is the union of two rays which have the same starting point; that is, there exist two rays \overrightarrow{BA} and \overrightarrow{BC} such that a point X belongs to H if and only if X belongs to at least one of the rays \overrightarrow{BA} and \overrightarrow{BC} . This angle will be denoted $\measuredangle ABC$. The point B is called a *vertex* of $\measuredangle ABC$ if A, B, are non-collinear. $\measuredangle ABC$ is called a *straight* angle if A, B, and C are collinear.

Thm. 44. Every straight angle is a line.

Thm. 45. No angle has two vertices.

Thm. 46. If, in $\measuredangle ABC$, D is a point different from B on \overrightarrow{BA} and E is point different from B on \overrightarrow{BC} , then $\measuredangle DBE = \measuredangle ABC$.

Defn. A set H of points is said to be a *triangle* if there exist three non-collinear points A, B, C such that H is the union of the three segments \overline{AB} , \overline{BC} , \overline{AC} ; that is, a point X belongs to H if and only if X belongs to at least one of the segments \overline{AB} , \overline{BC} , \overline{AC} . Such a triangle will be denoted $\triangle ABC$. Each of the open intervals AB, AC, BC is called a *side* of $\triangle ABC$, and each of the points A, B, C is called a *vertex* of $\triangle ABC$.

Thm. 47. If a line L intersects two sides of $\triangle ABC$ then none of A, B, C belongs to L.

Thm. 48. If the line L intersects the open interval (side) AB of $\triangle ABC$, and L contains C, then L does not contain A or B.

Thm. 49. If a line L contains two vertices A, B of $\triangle ABC$, then L does not intersect either of the open intervals AC or BC.

Thm. 50. Every triangle has 3 and only 3 vertices.

Thm. 51 Every triangle has 3 and only 3 sides.

Axiom 14. (Pasch) If A, B, C are three non-collinear points and L is a line which contains a point between A and B and does not contain any of the points A, B, and C, then either L contains a point between A and C or L contains a point between B and C.

Thm 52. if a line L intersects a side of a triangle $\triangle ABC$, then L contains at least two points of $\triangle ABC$.

Note that Theorem 52 is equivalent to Axiom 14.

Thm. 53. No line intersects all 3 sides of a triangle.

Thm. 54. if L is a line, then there exist two sets S_1 and S_2 such that

- i. every point belongs to one of the sets S_1 , S_2 or L
- ii. no point belongs to two of the sets S_1 , S_2 or L
- iii. no point of L is between two points of S_1
- iv. no point of L is between two points of S_2
- v. for each point X_1 in S_1 and each point X_2 in S_2 , there is a point of L between X_1 and X_2 .

Defn. A set S is said to be a *side* of a line L if there exist two sets S_1 and S_2 such that they and L satisfy the five requirements in the conclusion of theorem 54 and S is one of the two sets S_1 , S_2 .

Thm. 55. No line has three sides.

Thm 56. If A, B, C are three non-collinear points and D and E are points such that A-B-D and B-E-C, then there exists a point F such that D-E-F and A-F-C.

Thm. 60. If A, B, C are three non-collinear points and D and F are points such that A-B-D and A-F-C, then there exists a point E such that B-E-C and D-E-F.

Thm. 61. If a line L contains the starting point A of a ray R and R is not a subset of L, then there is a side of L which contains every point of F different from A.

Thm. 62. If L_1 and L_2 are two lines having a common point B, then there exist two points A and C on L_1 such that A and C belong to different sides of L_2 .

Thm. 63. If L is a line and A is a point which does not belong to L, then the side of L which contains A is called the *A*-side of L.

Defn. A set I is said to be the *interior* of $\measuredangle ABC$ if

- i. A, B, C are non-collinear and
- ii. I consists of all points that belong to both the C-side of the line that contains A and B, and to the A-side of the line that contains B and C.

Defn. The set E is said to be the *exterior* of $\measuredangle ABC$ if

- i. A, B, C are non-collinear and
- ii. E consists of all points that belong neither to $\measuredangle ABC$ nor to the interior of $\measuredangle ABC$

Thm. 64. If X and Y are two points which belong to the interior of $\measuredangle ABC$, then every point of the segment \overline{XY} belongs to the interior of $\measuredangle ABC$

Thm. 65. If X and Y are two points of the exterior of $\measuredangle ABC$, then there are at most two points of $\measuredangle ABC$ between X and Y.

Thm. 66. If X is a point of the interior of $\angle ABC$, then there is one and only one point of $\angle ABC$ between X and Y.

Thm. 67. If P is a point of the interior of $\measuredangle ABC$, then there exists a point D on \overrightarrow{BA} and a point E on \overrightarrow{BC} such that D-P-E.

Thm. 68. If A, B, C are three non-collinear points, and D is a point different from B on \overrightarrow{BA} and E is a point different from B on \overrightarrow{BC} , then every point between D and E belongs to the interior of $\measuredangle ABC$.

Defn. The *interior* of $\triangle ABC$ consists of all points which are interior to all three of the angles $\measuredangle ABC$, $\measuredangle ACB$ and $\measuredangle BAC$. The *exterior* of the triangle consists of all points which belong neither to the triangle, nor to its interior.

Thm. 69. If a point belongs to the interior of $\measuredangle ABC$ and to the interior of $\measuredangle ACB$, then it belongs to the interior of $\triangle ABC$.

Thm. 70. If X and Y are two points of $\triangle ABC$, then there is no point of $\triangle ABC$ between X and Y

Thm. 71. If X and Y are two points of the exterior of $\triangle ABC$, then either there are no more than two points of $\triangle ABC$ between X and Y or there is a side of $\triangle ABC$ between X and Y

Thm. 72. If X and Y are two points of the exterior of triangle $\triangle ABC$, then there exists a point W of the exterior such that \overline{XW} and \overline{YW} are subsets of the exterior.

Thm. 73. If X and Y are points of the interior and exterior, respectively, of a triangle $\triangle ABC$, then there is one and only one point of $\triangle ABC$ between X and Y.

Thm. 74, If a ray R intersects the interior of a triangle $\triangle ABC$, then R intersects $\triangle ABC$.

Thm. 75. If X is a point of the exterior of triangle $\triangle ABC$, then there is a line that contains X and lies entirely in the exterior of $\triangle ABC$.

Thm. 76. If A is a point of a side S if a line then there exists a line which contains A and is a subset of S.

Thm. 77. If A is a point of the interior I of an angle, then there exists a ray which contains A and is a subset of I.

Thm. 78. If A is a point of the exterior of an angle, then there exists a line which contains A and lies entirely in the exterior.

Thm. 79. If a line intersects the interior of an angle, then it intersects the angle.

Defn. An angle $\measuredangle ABC$ is *congruent* to angle $\measuredangle A'B'C'$ if for every pair of points D and E on rays \overrightarrow{BA} and \overrightarrow{BC} respectively, and for any two points D' and E' on the rays $\overrightarrow{B'A'}$ and $\overrightarrow{B'C'}$ respectively such that $\rho(B,D) = \rho(B',D')$ and $\rho(B,E) = \rho(B',E')$, it follows that $\rho(D,E) = \rho(D',E')$. Congruent angles will be denoted: $\measuredangle ABC \cong \measuredangle A'B'C'$.

Thm. 80. Every angle is congruent to itself.

Thm. 81. Every two straight angles are congruent.

Thm. 82. Every angle that is congruent to a straight angle is a straight angle.

Thm. 83. If $\measuredangle ABC \cong \measuredangle A'B'C'$ and $\measuredangle A'B'C' \cong \measuredangle A''B''C''$, then $\measuredangle ABC \cong \measuredangle A''B''C''$

Axiom 15. If

- i. A, B, C are three non-collinear points
- ii. A', B', C' are three non-collinear points
- iii. D is a point such that A-B-D
- iv. D' is a points such that A'-B'-D'
- v. $\rho(A, B) = \rho(A', B')$
- vi. $\rho(B,C) = \rho(B',C')$
- vii. $\rho(A, C) = \rho(A', C')$
- viii. $\rho(B,D) = \rho(B',D')$

then $\rho(C, D) = \rho(C', D')$

Thm. 85.

- ix. A, B, C are three non-collinear points
- x. A', B', C' are three non-collinear points
- xi. D is a point such that A-D-B
- xii. D' is a points such that A'-D'-B'
- xiii. $\rho(A, B) = \rho(A', B')$
- xiv. $\rho(B, C) = \rho(B', C')$
- xv. $\rho(A, C) = \rho(A', C')$

xvi. $\rho(B, D) = \rho(B', D')$

then $\rho(C,D) = \rho(C',D')$

Thm. 86. If, for $\measuredangle ABC$ and $\measuredangle A'B'C'$, there exist two points D and E different from B on the rays \overrightarrow{BA} and \overrightarrow{BC} respectively and D' and E' on rays $\overrightarrow{B'A'}$ and $\overrightarrow{B'C'}$ respectively, such that $\rho(B,D) = \rho(B',D')$, $\rho(B,E) = \rho(B',E')$ and $\rho(E,D) = \rho(E',D')$, then $\measuredangle ABC \cong \measuredangle A'B'C'$

Defn. A triangle *H* is said to be <u>congruent</u> to a triangle H' if the vertices of *H* can be labelled with A, B, C and the vertices of H' with A', B', C' such that

i. $\rho(A, B) = \rho(A', B')$ ii. $\rho(C, B) = \rho(C', B')$ iii. $\rho(A, C) = \rho(A', C')$ iv. $\angle ABC \cong \angle A'B'C'$ v. $\angle BAC \cong \angle B'A'C'$

vi. $\measuredangle ACB \cong \measuredangle A'C'B'$

We denote this $\triangle ABC \cong \triangle A'B'C'$

Thm 87 (SSS) If for $\triangle ABC$ and $\triangle A'B'C'$, $\rho(A,B) = \rho(A',B')$, $\rho(C,B) = \rho(C',B')$, $\rho(A,C) = \rho(A',C')$, then $\triangle ABC \cong \triangle A'B'C'$.

Thm. 88 (SAS) If for $\triangle ABC$ and $\triangle A'B'C'$, $\rho(A, B) = \rho(A', B')$, $\rho(C, B) = \rho(C', B'), \measuredangle ABC \cong \measuredangle A'B'C'$, then $\triangle ABC \cong \triangle A'B'C'$.

Thm, 89 If for $\triangle ABC$, $\rho(A, B) = \rho(A, C)$, then $\measuredangle ABC \cong \measuredangle ACB$.

Thm. 90 If for $\triangle ABC$, $\measuredangle ABC \cong \measuredangle ACB$, then $\rho(A, B) = \rho(A, C)$

Defn. A triangle for which $\rho(A, B) = \rho(A, C)$ is an <u>isosceles</u> triangle. Sides *AB* and *AC* are the <u>legs</u> of the isosceles triangle, and side \overline{BC} is the <u>base</u>. The angles $\measuredangle ABC$ and $\measuredangle ACB$ are the <u>base</u> angles and $\measuredangle BAC$ is the <u>vertex angle</u>.

Thm. 91: If ℓ_1 and ℓ_2 are two lines, *B* is the point of intersection of ℓ_1 and ℓ_2 , *A* and *C* are points of ℓ_1 such that *A*-*B*-*C*, and *D* and *E* are points of ℓ_2 such that *D*-*B*-*E*, then $\measuredangle ABD \cong \measuredangle CBE$

Defn. If A, B, and C are points of a line L such that A-B-D and D is a point not on L, then $\angle ABC$ and $\angle CBD$ are called <u>supplementary angles</u> and each of them is called a <u>supplement</u> of the other.

Thm. 92. Two angles are congruent if they have congruent supplements.

Axiom 16/Thm. 93: If A' and B' are points of a line L, and S is a side of L, and A, B, C are non-collinear points such that $\rho(A, B) = \rho(A', B')$, then there exists a point C' of S such that $\rho(A'C') = \rho(A, C)$ and $\rho(C, B) = \rho(C', B')$

Thm. 94. If $\measuredangle ABC$ is not a straight angle, A' and B' are points of a line L, and S is a side of L,, then there exists a point $C' \in S$ such that $\measuredangle ABC \cong \measuredangle A'B'C'$

Axiom 17/Thm 95: If A' and B' are points of a line ℓ , and A, B, C are non-collinear points, and C' and C'' are two points such that

- $\rho(A', B') = \rho(A, B)$
- $\rho(A', C') = \rho(A', C'') = \rho(A, C)$
- $\rho(B', C') = \rho(B', C'') = \rho(B, C)$

then C' and C" belong to different sides of ℓ .

Theorem 96. If A, B, C are non-collinear points, D is on the C-side of the line \overrightarrow{AB} , and $\angle ABC = \angle ABD$, then D is on the ray \overrightarrow{BC} .

Thm. 97 (ASA). Given triangles $\triangle ABC$ and $\triangle A'B'C'$ such that $\rho(A, B) = \rho(A'B')$, $\measuredangle BAC \cong \measuredangle B'A'C'$ and $\measuredangle ABC = \measuredangle A'B'C'$ then $\triangle ABC \cong \triangle A'B'C'$

Thm. 98. If the point *D* belongs to the interior of $\measuredangle ABC$, then $\measuredangle ABC$ is not congruent to $\measuredangle ABD$.

Defn. An angle is a *right angle* if it is congruent to one of its supplements.

Thm. 99. There exists a right angle

Thm. 100. Every angle that is congruent to a right angle is a right angle.

Thm. 101. Every two right angles are congruent.

Defn. Two lines *l* and *m* are *perpendicular* to each other if there exist three points *A*, *B*, *C* such that $A, B \in l$, $B, C \in m$ and $\measuredangle ABC$ is a right angle.

Thm. 102. If the two lines *l* and *m* are perpendicular to a line *n*, then *l* and *m* are parallel.

Thm. 103. If two lines l and m are parallel, and line n is perpendicular to l, then n is also perpendicular to m.

Thm. 104. Given lines *l* and *m* such that $A, B, C \in l$, $D, E, F \in m$, A - B - C, D - E - F, $\angle ABE \cong \angle BEF$, and *A*, *D* on the same side of \overrightarrow{BE} and *C*, *F* on the same side of \overrightarrow{BE} (alternate interior angles are congruent), then *l* is parallel to *m*.

Thm. 105. Given parallel lines l and m that are intersected by line n, the alternate interior angles are congruent.

Thm 106. Given supplementary angles $\measuredangle ABC$ and $\measuredangle CBD$ and angles congruent to those angles $\measuredangle ABC \cong \measuredangle EFG$ and $\measuredangle CBD \cong \measuredangle GFH$ such that *H* and *E* are on opposite sides of \overrightarrow{GF} then $\measuredangle EFG$ and $\measuredangle GFH$ are supplements.

Thm. 107. Given angles that share a side $\measuredangle ABC$ and $\measuredangle CBD$ such that *C* lies in the interior of $\measuredangle ABD$, and angles congruent to those angles $\measuredangle ABC \cong \measuredangle EFG$ and $\measuredangle CBD \cong \measuredangle GFH$ such that *G* lies in the interior of $\measuredangle EFH$, then $\measuredangle ABD \cong \measuredangle EFH$.

Defn. A set H of points is said to be a *quadrilateral* if there exist four points, A, B, C, D such that no three are collinear, and the segments \overline{AB} , \overline{BC} , \overline{CD} , and \overline{AD} intersect only at the endpoints, and H is the union of the four segments \overline{AB} , \overline{BC} , \overline{CD} , and \overline{AD} . A quadrilateral has four sides \overline{AB} , \overline{BC} , \overline{CD} , and \overline{AD} , and four angles $\measuredangle ABC$, $\measuredangle BCD$, $\measuredangle CDA$ and $\measuredangle DAB$. Sides of a quadrilateral are *adjacent* if they share an endpoint, and *opposite* if they do not share an endpoint. Angles of a quadrilateral are *adjacent* if they share a side (have as a subset one of the sides of the quadrilateral), and *opposite* if they do not share a side.

Defn. A square is a quadrilateral whose angles are all right angles, and whose sides are all congruent (have the same length)

Defn. A rectangle is a quadrilateral whose angles are all right angles.

Defn. A parallelogram is an a quadrilateral whose opposite sides are parallel (both pairs of opposite sides)

Defn. A rhombus is a quadrilateral whose sides are all congruent

Defn. A kite is a quadrilateral with two (disjoint) pairs of congruent sides.

Thm. 108. A quadrilateral is a parallelogram if and only if its opposite sides are congruent.

Thm. 109. A quadrilateral is a parallelogram if and only if all adjacent pairs of angles of the quadrilateral are congruent to pairs of supplementary angles.

Thm. 110. A quadrilateral is a parallelogram if and only if it's diagonals bisect each other.

Axiom 18/Thm. 111: Every angle $\measuredangle ABC$ has a measure $m \measuredangle ABC$ which is a real number in the interval (0,180] (we will denote angle measurements with the degree symbol °) with the properties that

- an angle has measure 180° if and only if it is a straight angle
- angles are congruent if and only if their measure is the same
- the sum of the measures of supplementary angles is 180°
- given an angle $\measuredangle ABC$ that is not a straight angle, and given *D* in the interior of $\measuredangle ABC$ then $m \measuredangle ABD + m \measuredangle DBC = m \measuredangle ABC$

Thm. 112. The sum of the measures of the angles in a triangle is the measure of a straight angle.

Thm. 113. A quadrilateral is a parallelogram if and only if the opposite angles are congruent.

Defn. A segment \overline{AB} is bisected by a set S (line, segment, ray, etc.) if the intersection of the segment and the set is the midpoint of the segment.

Defn. An angle $\measuredangle ABC$ is bisected by a straight object (segment, ray, line) if the straight object includes the vertex *B* of the angle, and a point *D* of the interior of the angle such that $\measuredangle ABD \cong \measuredangle DBC$

Thm. 114 If one angle formed by two intersecting lines is a right angle, then all four angles formed by two intersecting lines are right angles.

Defn. Two lines which meet at right angles are called *perpendicular* lines.

Thm. 115 A quadrilateral is a rhombus if and only if its diagonals bisect each other and are perpendicular.

Thm. 116. A quadrilateral is a rhombus if and only if its diagonals bisect the angles of the quadrilateral.

Thm. 117. If a quadrilateral has congruent angles, the angles are right angles.

Thm. 118. A quadrilateral is a square if and only if its diagonals are congruent, bisect each other, and are perpendicular.

Which of the axioms are satisfied by each of these spaces? Ex. 1: Points: A, B, C Lines {A}, {B}, {C}, {A,B}, {A,C}, {B,C}

Ex. 2: Points: A, B, C Lines {A,B}, {A,C}, {B,C}

Ex. 3: Points: A, B, C Lines {A}, {B}, {C}

Ex. 4: Points: A, B, C, D Lines {A}, {B}, {C}, {D}, {A,B}, {A,C}, {B,C}, {AD}, {B,D}, {C,D}, {A,B,C}, {A, B, D}, {A, C, D}, {B, C, D}, {A, B, C, D}

Ex. 5: Points: A, B, C, D Lines {A}, {B}, {C}, {D}, {A,B}, {A,C}, {B,C}, {AD}, {B,D}, {C,D}, {A,B,C}, {A, B, D}, {A, C, D}, {B, C, D}

Ex. 6: Points: A, B, C, D Lines {A}, {B}, {C}, {D}, {A,B}, {A,C}, {B,C}, {AD}, {B,D}, {C,D}, {A,B,C}, {A, B, D}, {A, C, D}, {B, C, D}

Ex. 7: Points: A, B, C, D Lines {A,B}, {A,C}, {B,C}, {AD}, {B,D}, {C,D}

Ex. 8: Points: A, B, C, D Lines: {A,B,C}, {A, B, D}, {A, C, D}, {B, C, D}

Ex. 9: Points: all of the points on the (surface of a) sphere Lines: all of the great circles (intersection of the sphere with a Euclidean plane including the center of the sphere)

Ex. 10: Points: all of the points in $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ Lines: all of the open segments that consist of the intersection of a Euclidean line with the point set.

Ex. 11: The Euclidean plane, with the usual points and lines

Ex. 12: Points: A, B, C, D Lines: {A,B}, {A,B,C}, {A,B,D}, {C,B,D} Mad Libs version of the axioms:

Axiom 1 Every line is a non-empty set of points.

Axiom 2. There exist at least two points

Axiom 3. If $and_{point 1}$ and $are two points^*$, then there is a line which contains** both point 1and point 2*This sentence structure should be interpreted to imply that A and B are not the same point.

**contains does not mean consists of

Axiom 4. If $__{line}$ is a line, then there is a point which does not belong to $__{line}$.

Axiom 5. If $\underline{}_{point 1}$ and $\underline{}_{point 2}$ are two points, there do not exist two lines such that each of them contains both $\underline{}_{point 1}$ and $\underline{}_{point 2}$.

Axiom 6. If _____ is a line, and ______ is a point that does not belong to ______, then there do not exist two lines which contain ______ and do not intersect ______.

Axiom 7. If _____ is a line and ______ is a point that does not belong to ______, then there exists a line which contains ______ and is parallel to ______.

Geometries:

1. Consider the example of spherical geometry:

Ex. 9: Points: all of the points on the (surface of a) sphere Lines: all of the great circles (intersection of the sphere with a Euclidean plane including the center of the sphere)

- A. Which axioms does it satisfy?
- B. Suggest alternate axioms to replace the axioms it does not satisfy.
- 2. Consider Ex. 10:

Points: all of the points in $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$

Lines: all of the open segments that consist of the intersection of a Euclidean line with the point set.

- A. Which axioms does it satisfy?
- B. Suggest alternate axioms to replace the axioms it does not satisfy.
- 3. Consider the example of hyperbolic geometry as described in the textbook section 1.2

Points: all of the points in the open upper half-plane: $\{(x, y) \in \mathbb{R}^2 | y > 0\}$

Lines come in two varieties: vertical lines $LV_a = \{(a, y) \in \mathbb{R}^2 \mid y > 0\}$ and circles whose

center lies on the x-axis: $LC_a = \{(x, y) \in \mathbb{R}^2 | (x-a)^2 + y^2 = r^2, y > 0\}$

- A. Which axioms does it satisfy?
- B. Suggest alternate axioms to replace the axioms it does not satisfy.