Proof of theorem 57:

Let $\triangle ABC$ be a triangle.

By [look up the correct theorem number here], there exists a line that is parallel to \overrightarrow{AB} that goes through the point C

Name points D, E and angle measures a, b, c, d, e as shown on the diagram:

By Axiom 7 (considering transversal \overrightarrow{AC}), $a+(c+e)=180^\circ$ so by theorem 54 a=d

By Axiom 7 (considering transversal \overrightarrow{BC}), $b+(c+d)=180^{\circ}$ so by theorem 54 b=e

By Theorem 25, a straight angle has measure 180°, so $d + c + e = 180^{\circ}$

By substitution $a+b+c=180^{\circ}$