SSS hint-through...

Given $\Delta\!ABC$ and $\Delta\!DEF$ such that $\overline{AB}\cong\overline{DE}$, $\overline{BC}\cong\overline{EF}$ and $\overline{AC}\cong\overline{DF}$

Construct a triangle (using theorems 13 and then 12) ΔGEF such that $\Delta ABC \cong \Delta GEF$ by SAS and G is on the opposite side of \overrightarrow{EF} from D.

Use congruent triangles and algebra to prove that $\overline{DE}\cong \overline{GE}$ and $\overline{DF}\cong \overline{GF}$

Notice that there are three ways that \overline{DG} can intersect \overrightarrow{EF} :

F . We may assume without loss in generality that $E \in \overline{DE}$	or F We may assume without loss in generality that $Q \in \overrightarrow{FE}$
---	--

For each case:

First use a theorem to prove something about ΔFDG

Then use the same theorem to prove something about ΔEDG (unless this is case 1 and ΔEDG isn't a triangle)

Now some algebra and maybe an axiom to prove something about the angles $\angle EDF$ and $\angle EGF$

Then use a theorem to prove that $\Delta DEF \cong \Delta GEF$