1. Given that f is an isometry, and $m\overline{AB} = 4$ and $m\angle ABC = 40^{\circ}$ What can you conclude?

2. Given that f is an isometry such that f(A) = D, and $m\overline{AB} = 4$, $m\overline{DE} = 7$, $m\overline{DF} = 4$ What can you conclude?

3. Given that f is an isometry such that f(A) = D and $m \angle ABC = 40^{\circ}$ and $m \angle FDE = 40^{\circ}$ What can you conlude?

4. I want to use theorem 1 to prove that $\overrightarrow{DE} = \overrightarrow{DF}$. Give an example of givens that would let you prove this.

5. I want to use theorem 2 to prove that C=D. Give an examples of givens that would let you prove this

List of statements to use in the problems to the	For each line number, tell which of the other line
right:	numbers are needed to prove it. If there is
1) The function f is an isometry	insufficient information to prove it, say what else
2) $\overline{AB} \cong \overline{DE}$	is needed.
3) $\overline{BC} \cong EF$	A. line 8
4) $\angle ABC \cong \angle DEF$	
5) f(A) = D	D line 10
6) $f(B) \in \overrightarrow{DE}$	B. line 10
7) $f(C)$ and F are on the same side of \overrightarrow{DE}	
8) $\overline{f(A)f(B)} = \overline{Df(B)}$	C. line 11
9) $\overline{AB} \cong \overline{f(A)f(B)}$	
10) $\overline{BC} \cong \overline{f(B)f(C)}$	D. line 12
11) $\angle ABC \cong \angle f(A)f(B)f(C)$	
12) $\overline{DE} \cong \overline{Df(B)}$	
$13) \ f(B) = E$	E. line 13
14) $\overline{f(B)f(C)} = \overline{Ef(C)}$	
15) $\overline{Ef(C)} \cong \overline{EF}$	F. line 15
16) $\angle f(A)f(B)f(C) = \angle DEf(C)$	
17) $\angle DEf(C) \cong \angle DEF$	
18) $\overrightarrow{Ef(C)} = \overrightarrow{EF}$	G. line 17
19) $f(C) = F$	
	H. line 18
	I. line 19