Theorem 18

	Zar Weber
0	Thm. 18 4-17
	Given: P is an perpodicular bisoctor of AB
By	Brows it is given that P is an peopularated of AB. Thom. 17 we true that there is a midpoint M between AB such that AM = MB
	Also since P is an perpendicular bisactor of AB we thould that $\angle AMP = 90^\circ$ and $\angle BMP = 90^\circ$ so Harefore $\angle AMP = \angle BMP$
	Also we know that PM is a side of both triangles AAMP and A BMP because P is an perpendicular brancher of AB.
)	SO SINCE AM & BM and KAMP = CBMP and Share side PM we know that DAMP = DRMP by SAS.
S	ine ΔAMP and ΔBMP are congruent the Enth that AP = BP by CPCTC.

Given a point P and lose sequents AP and of such
that $\overline{AP} = \overline{BP}$ (i)

Let an be the mispoint of AB by The MI Such that

AM & BM (i)

Concert P and M with PM

APPB is isoberies

So < PAB = < PBA (s)

By SAS APPM = SBPM by Incs (1) (1) (2)

or < PMA + m & PMB = 180°

by CPCTC m < PMB = m & PMB = m & PMB = 70°

So AM I AB

Therefore P is on the Perpenhantal beginner.

Thm 17 parts 2 and 3

Thm 17: Part B
(1) Suppose there are a unique midpoints on line AB called M, + Ma.
-0, c(n,n,)+d(m,,m2)+d(m2,B)
(3) d(A,m,)+d(m,,B)=d(A,B) By defn.
(4) d(A,m2) +d (Ma,B) = d(A,B)) of mizgaint
(5) Am, = Am = mak = mil + lines 3+4 Also by definition of midpoint.
(6) so there is a ray Am2 such that MIEAM2 + by line (5)
(7) $Am_1 = Am_2$
(8) By Thm 2, m= m2
(9) This contradicts line 1
So, there con't be more than one midpoint.
Therefore, there can be at most one midpoint. []

$$d(A,M_1) + d(B,M_1) = d(A,B)$$

$$d(A,M_2) + d(B,M_2) = d(A,B)$$

$$d(A,M_1) + d(B,M_1) = d(A,M_2) + d(B,M_2)$$

$$d(B,M_1) + d(B,M_1) = d(B,M_2) + d(B,M_2)$$

$$\frac{AM_1 \cong BM_1}{AM_2 \cong BM_2}$$

$$\frac{AM_2 \cong BM_2}{BM_2}$$

$$\frac{AM_2 \cong BM_2}{BM_2}$$

$$\frac{AM_3 \cong BM_3}{BM_2}$$

$$\frac{AM_3 \cong BM_3}{BM_3}$$

$$\frac$$

Theorem 17 - Part 3

For any segment, there can't be more than one perpendicular buector

Proof

Let M be the midpoint of AB

Suppose there is more than one perpendicular biscotor of AB

Name two of these perpendicular bisectors DM and EM (distinct)

Then m LDMA = 90° and m LEMB = 90° (by the definition of perpendicular bisector)

Then m LAMD + m L DME + m L EMB = 1800 (by the angle axiom)

Using substitution, 900+mLDME+900=1800

Thus, mLDME = 00

By the angle axiom, DM = EM , which contradicts there being more than one perpendicular bisector

Therefore, there is only one perpendicular bisector of a segment

Thm 19

Part 1: given a line and a point not on the line, there exists a line perpendicular to the given line that includes the given point.

Part 2: Given a line and a point not on the line, there exists at most one line (ie. there cannot be 2 lines) that is perpendicular to the given line that includes the given point

Part 3: Given a line and a point on the line, there exists a line perpendicular to the given line that includes the given point.

Part 4: Given a line and a point on the line, there exists at most one line (ie. there cannot be 2 lines) that is perpendicular to the given line that includes the given point.