25. Prove that the composition of two 1-1 functions is 1-1.

Proof: Given functions $f: X \to Y$ and $g: Y \to Z$ that are both 1-1 functions.

This means:

If $f(a) = f(b)$ for any $a, b \in X$	If $g(u) = g(v)$ for any $u, v \in Y$
then $a = b$	then $u = v$
There is a function $g \circ f : X \to Z$	

Suppose $g \circ f(a) = g \circ f(b)$ for some $a, b \in X$

Then g(f(a)) = g(f(b)) and if I rename u = f(a) and v = f(b), then g(u) = g(v)

Since g is 1-1, we know that u = v

So f(a) = f(b)

Since *f* is 1-1, we know that a = b

This if $g \circ f(a) = g \circ f(b)$ for some $a, b \in X$, then a = b. This proves that $g \circ f$ is 1-1.

26. Prove that the composition of two onto functions is onto.

Proof: Given functions $f: X \to Y$ and $g: Y \to Z$ that are both onto functions.

This means

If <i>u</i> is any element in <i>Y</i> , then somewhere in <i>X</i> there is	If <i>t</i> is any element in <i>Z</i> , then somewhere in <i>Y</i> there is
an element <i>a</i> that maps to u (so $f(a) = u$)	an element v that maps to t (so $g(v) = t$)
There is a function $g \circ f : A \to Z$	(because the codomain of f is the domain of g .)
Let $r \in Z$	(This means: pick any element in Z and name it r).
Because g is onto, there exists $w \in Y$ such that	This means: somewhere in <i>Y</i> there is an element that
g(w) = r	maps to r ; let's name it w .
Now because $w \in Y$ and f is onto, there exists $b \in X$	This means: somewhere in X there is an element that
such that $f(b) = w$	maps to w, let's name it b.
Such that $f(0) = w$	
So, $g(f(b)) = g(w) = r$	
We have shown that given any element <i>r</i> , there exists	
and element $b \in X$ such that $g \circ f(b) = r$, and hence	

 $g \circ f$ is onto.