Application theorem

- (1) Given triangles ΔABC and ΔDEF
- (2) Construct circles C_1 and C_2 with centers A and D respectively, and with radius d(A, D), and let P be a point in the intersection of C_1 and C_2
- (3) Because C_1 and C_2 have the same radius, then $\overline{PA} \cong \overline{PD}$
- (4) Let f be the rotation around point P by angle $\angle APD$ (so that f(A) is on the same side of AP as D).
- (5) Because f is a rotation, $\angle APf(A) \cong \angle APD$ and f(P) = P
- (6) Pf(A) = PD by theorem 1 and lines ___5_ and ___4___
- (7) Because f is an isometry, $\overline{PA} \cong \overline{f(P)f(A)}$
- (8) By lines $7_{,,5}$ and $3_{,7}$, $\overline{PD} \cong \overline{Pf(A)}$
- (9) By theorem 2 and line ____6___ and ____8___ f(A) = D
- (10) Let g be the rotation around point D by angle $\angle f(B)DE$ (where g(f(B)) is on the same side of $\overrightarrow{Df(B)}$ as E)
- (11) Because g is a rotation, $\angle f(B)Dg(f(B)) \cong \angle f(B)DE$ and g(D) = D
- (12) By theorem 1 and lines _____10___ and ____11____, $\overline{Dg(f(B))} = \overrightarrow{DE}$

(13) By lines __9__ and ____11___, g(f(A)) = D

(14) By theorem 8 and lines ___4_ and ___10___, $g \circ f$ is an isometry

(16) If g(f(C)) lies on the same side of DE as F, then $g \circ f$ satisfies the conditions for the conclusion to be true by lines __14___, __13__ and __12___.

- (17) If g(f(C)) lies on the opposite side of DE from F , then let h be the reflection in the line DE
- (18) Since h is a reflection, h(g(f(C))) lies on the opposite side of DE from g(f(C))
- (19) By lines _____17___ and _____18____, h(g(f(C))) lies on the same side of \overrightarrow{DE} as F
- (20) Since h fixes points on \overrightarrow{DE} , and by line __13___, h(g(f(A))) = g(f(A)) = D
- (21) Since *h* fixes points on *DE*, and by line <u>15</u>, h(g(f(B))) = g(f(B))
- (22) So by lines <u>12</u> and <u>21</u>, $h(g(f(B))) \in DE$
- (23) By theorem 8 and lines __17___ and __14____, $h \circ g \circ f$ is an isometry
- (24) Then by lines ____23____, ___22___, ___20___ and ____19____, $h \circ g \circ f$ satisfies the conditions for the conclusion to be true.

Ap (1)	Application theorem: (1) Given triangles ΔABC and ΔDEF		
(2)	Construct circles C_1 and C_2 with centers A and D respectively, and with radius $d(A, D)$, and let P be a point in the intersection of C_1 and C_2		
(3)	Let f be the rotation around point P by angle $\angle AI$	D (where $f(A)$ is on the same side of \overrightarrow{AP} as D).	
(4)	Because f is a rotation,	then $\angle APf(A) \cong \angle APD$ and $f(P) = P$	
(5)	By theorem 1 and lines 3 and 4	then $\overline{Pf(A)} = \overline{PD}$	
(6)	Because f is an isometry,	then $\overline{PA} \cong \overline{f(P)f(A)}$	
(7)	By lines_6and4,	then $\overline{PA} \simeq \overline{Pf(A)}$	
(8)	By theorem 2 and lines and	then $f(A) = D$	
(9) Let g be the rotation around D by angle $\angle f(B)DE$ (where $f(B)$ is on the same side of $\overline{Df(B)}$ as E)			
(10)	Because g is a rotation,	then $\angle f(B)Dg(f(B)) \cong \angle f(B)DE$ and $g(D) = D$	
(11)	by theorem 1 and lines 10 and 9 ,	then $\overline{Dg}(f(B)) = \overline{DE}$	
(12)	By theorem 8 and lines $\underline{3}$ and $\underline{9}$,	then $g \circ f$ is an isometry	
(13)	By lines 8 and 0.	then $g(f(A)) = D$ 7.5 $PA \stackrel{a}{\rightarrow} PD$ by line 2	
(14) By	lines <u>13</u> and <u>11</u> ,	then $g \circ f$ maps A to D and maps B to a point or DE	
(15 lf g by li	$f(f(C))$ lies on the same side of \overline{DE} as F then ines $\underline{H}_{,,1} = \underline{L}_{,2}$ and $\underline{MM}_{,2}$,	then $g \circ f$ satisfies the conditions for the conclusion to be true	
P = P D			
(16) If $g(f(C))$ lies on the opposite side of \overline{DE} from F , then let h be the reflection across the line \overline{DE}			
(17)	Since <i>h</i> is a reflection,	then $h(g(f(C)))$ lies on the opposite side of from $g(f(C))$	
(18)	Since h fixes points on \overrightarrow{DE} , and by line \bigcirc	then $h(g(f(C)))$ lies on the same side of \overline{L}	
(19)	Since <i>h</i> fixes points on \overline{DE} , and by line $ 4 $, then $h(g(f(B))) = g(f(B))$	
(20)	By lines 19 and 14	then $h(g(f(B))) \in \overline{DE}$	
By lines 3 and 6, then $h(g(f(A))) = g(f(A)) = D$			
By theorem 8 and lines 6 and 2 , then $h \circ g \circ f$ is an isometry			
Then by lines 22 , 21 , 20 and 18 , $h \circ g \circ f$ satisfies the conditions for the conclusion to be true.			