Application theorem:		
(1)		
(2)		
(3)		
(4)		
(5)		
(6)		
(7)		
(8)		
(9)		
(10)		
(11)		
(12)		
(13)		
(14)		

(15)

(16)			
(17)			
(18)			
(19)			
(20)			
(21)			
(22)			
(23)			

If $g(f(C))$ lies on the opposite side of \overrightarrow{DE} from F , then let h be the reflection across the line \overrightarrow{DE}				
Let g be the rotation around D by angle $\angle f(B)DE$ (where $f(B)$ is on the same side of $\overrightarrow{Df(B)}$ as E)				
Then by lines,, and, $h\circ g\circ f$ satisfies the conditions for the conclusion to be true.				
Construct circles C_1 and C_2 with centers A and D respectively, and with radius $d(A,D)$, and let P be a point in the intersection of C_1 and C_2				
Given triangles ΔABC and ΔDEF				
Let f be the rotation around point P by angle $\angle APD$ (where $f(A)$ is on the same side of \overrightarrow{AP} as D).				

then $h(g(f(C)))$ lies on the opposite side of \overrightarrow{DE} from $g(f(C))$	then $g\circ f$ maps A to D and maps B to a point on \overrightarrow{DE}		
then $f(A) = D$	then $\overline{Dg(f(B))} = \overline{DE}$		
then $g\circ f$ satisfies the conditions for the conclusion to be true	then $\angle APf(A)\cong \angle APD$ and $f(P)=P$		
then $\angle f(B)Dg(f(B))\cong \angle f(B)DE$ and $g(D)=D$	then $\overline{PA} \cong \overline{Pf(A)}$		
then $g\circ f$ is an isometry	then $h(g(f(B))) = g(f(B))$		
then $h\circ g\circ f$ is an isometry	then $\overrightarrow{Pf(A)} = \overrightarrow{PD}$		
then $h(g(f(B))) \in \overrightarrow{DE}$	then $h(g(f(C)))$ lies on the same side of \overrightarrow{DE} as F		
then $\overline{PA} \cong \overline{f(P)f(A)}$	then $h(g(f(A))) = g(f(A)) = D$		
Because f is a rotation,	then $g(f(A)) = D$		
by theorem 1 and lines and,	Because g is a rotation,		
By theorem 1 and lines and,	Because f is an isometry,		
By theorem 2 and lines and	Since h is a reflection,		
By theorem 8 and lines and,	Since h fixes points on \overrightarrow{DE} , and by line,		
By theorem 8 and lines and,	Since h fixes points on $\stackrel{\longleftarrow}{DE}$, and by line,		
If $g(f(C))$ lies on the same side of \overrightarrow{DE} as F then by lines, and,	By lines and,		
By lines and,	By lines,		
By lines and,	By lines and,		