
Proofs to study 

Theorem 1 (Sides of Congruent Angles): If two congruent angles share a side (ray) and the other sides 
(rays) lie on the same side of the shared side, then their other sides are also shared. I.e. If 

ABC ABD   and C and D lie on the same side of AB


 then BC BD
 

.  

Proof Comments 
Let ABC ABD   such that                                      (1) 

C  and D   lie on the same side of AB


                          (2) 

State givens (name all objects) 

Suppose BC BD
 

                                                          (3) Suppose opposite of conclusion 
(proof by contradiction set up) 

Because C  and D  lie on the same side of AB


 and BC BD
 

, 
either C  lies in the interior of ABD  or D  lies in the interior of 

ABC     (uses 2,3) 

State the possible cases 

Without loss in generality, we may assume C  lies in the interior of 
ABD     (uses previous line)                                                (4) 

You can only do this if the two 
cases are essentially identical. 

Then, by the angle measurement axiom, 
ABC m CBD Am m BD     (uses 4)                            (5)          

Key axiom and equation! 

But m ABC m ABD    because ABC ABD   (uses 1)   (6)  

By substitution 
ABC m CBD Am m BC              (uses 4 and 5) 

 

So 0m CBD    (by algebra and previous line)  (7) Givens and algebra get you here 

Thus, by the angle measurement axiom BC BD
 

 (uses 7) (8) Key axiom! 

Which contradicts line 3 (8 and 3) Notice the contradiction 

Therefore, BC BD
 

 
QED 

Here’s the conclusion (opposite 
of “suppose” on line 3) 

 

  



Theorem 2 (Endpoints of Congruent Segments): On a ray, there is at most one point at a given distance 

from the endpoint of the ray. I.e. If C AB


 and CA BA  then C B . 

Proof: 

Let AB


 be a ray (1) 

Let C AB


 (2) such that CA BA  (3) 

Suppose C B   (4) 
Thus A, B and C must be distinct points, and by the between-ness axiom, either C lies between A and B or 
B lies between A and C. (Uses 2 and 4) 

Without loss in generality, we may assume that B lies between A and C. (5) 

So, by the distance axiom, ( , ) ( , ) ( , )d A B d B C d A C           (6) 

But ( , ) ( , )d A C d A B  (by 3)               (7) 

So by algebra ( , ) ( , ) ( , )d A B d B C d A B   and ( , ) 0d B C     (uses 6 and 7)    (8) 

Thus, by the distance axiom B C      (9) 

Which contradicts the assumption that C B , so we can conclude that B C   

QED 

 

 

 

Theorem 3 (Line intersection): Any two distinct lines intersect in at most one point. 

Let l and m be distinct lines. 

Suppose l and m intersect in more than one point. 

That means there are at least 2 points in the intersection, so let A and B be two points in the intersection of 
l and m 

Now, the line axioms says that there is one and only one line that contains the two points A and B, and 
hence l=m. 

This contradicts the given the l and m are distinct lines. 

Therefore, l and m can intersect in at most one point. 

QED 

  



Theorem 4: If f is an isometry and , ,A B C  are collinear (on the same line), then ( ), ( ), ( )f A f B f C  are 

collinear 

proof: 

Let f  be an isometry, and let A, B, and C be collinear points.   

By the between-ness axiom, one of A, B, or C must lie between the other two.   

Without loss in generality, we may assume that B lies between A and C. 

Since B lies between A and C on line AC


, by the distance axiom we know that 
( , ) ( , ) ( , )d A B d B C d A C         (1) 

Because f is an isometry, we know that: 

 ( , ) ( ( ), ( ))d A B d f A f B   

 ( , ) ( ( ), ( ))d B C d f B f C  

 ( , ) ( ( ), ( ))d A C d f A f C  

Substituting into line 1, we get ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))d f A f B d f B f C d f A f C   

By the distance axiom, since this equation holds, we know that ( )f B  lies between ( )f A  and ( )f C , 

and all three points are collinear 

QED 

 

Theorem 5: If f is an isometry, and X is on the circle with center P and radius r, then f(X) is on the circle 
with center f(P) and radius r. 

proof: 

Let f be an isometry, and let X be a point on the circle with center P and radius r. 

Since X is on the circle with center P and radius r, by definition of circle, we know that ( , )d P X r  (1) 

Since f is an isometry we know that ( , ) ( ( ), ( ))d P X d f P f X        (2) 

By substitution with lines 1 and 2, we know that ( ( ), ( ))d f P f X r    

and hence, by definition of circle,  ( )f X  lies on the circle with center ( )f P  and radius r.  

 

 


