Proofs to study

Theorem 1 (Sides of Congruent Angles): If two congruent angles share a side (ray) and the other sides (rays) lie on the same side of the shared side, then their other sides are also shared. **I.e.** If

 $\angle ABC \cong \angle ABD$ and *C* and *D* lie on the same side of \overrightarrow{AB} then $\overrightarrow{BC} = \overrightarrow{BD}$.

Proof	Comments
Let $\angle ABC \cong \angle ABD$ such that	(1) State givens (name all objects)
C and D lie on the same side of \overrightarrow{AB}	2)
Suppose $\overrightarrow{BC} \neq \overrightarrow{BD}$	(3) Suppose opposite of conclusion (proof by contradiction set up)
Because C and D lie on the same side of \overrightarrow{AB} and \overrightarrow{BC}	$\vec{F} \neq \vec{BD}$, State the possible cases
either C lies in the interior of $\angle ABD$ or D lies in the $\angle ABC$ (uses 2,3)	
Without loss in generality, we may assume C lies in the $\angle ABD$ (uses previous line)	e interior of (4) You can only do this if the two cases are essentially identical.
Then, by the angle measurement axiom,	Key axiom and equation!
$m \angle ABC + m \angle CBD = m \angle ABD$ (uses 4)	(5)
But $m \angle ABC = m \angle ABD$ because $\angle ABC \cong \angle ABD$ (uses 1) (6)
By substitution $m \angle ABC + m \angle CBD = m \angle ABC$ (uses 4 and 5)	
So $m \angle CBD = 0$ (by algebra and previous line) (7)	Givens and algebra get you here
Thus, by the angle measurement axiom $\overrightarrow{BC} = \overrightarrow{BD}$ (use	s 7) (8) Key axiom!
Which contradicts line 3 (8 and 3)	Notice the contradiction
Therefore, $\overrightarrow{BC} = \overrightarrow{BD}$ QED	Here's the conclusion (opposite of "suppose" on line 3)

Theorem 2 (Endpoints of Congruent Segments): On a ray, there is at most one point at a given distance from the endpoint of the ray. I.e. If $C \in \overrightarrow{AB}$ and $\overrightarrow{CA} \cong \overrightarrow{BA}$ then C = B.

Proof:

Let \overrightarrow{AB} be a ray (1)

Let $C \in \overrightarrow{AB}$ (2) such that $\overrightarrow{CA} \cong \overrightarrow{BA}$ (3)

Suppose $C \neq B$ (4)

Thus A, B and C must be distinct points, and by the between-ness axiom, either C lies between A and B or B lies between A and C. (Uses 2 and 4)

Without loss in generality, we may assume that B lies between A and C. (5)

So, by the distance axiom, d(A, B) + d(B, C) = d(A, C) (6)

But d(A,C) = d(A,B) (by 3) (7)

So by algebra d(A, B) + d(B, C) = d(A, B) and d(B, C) = 0 (uses 6 and 7) (8)

Thus, by the distance axiom B = C (9)

Which contradicts the assumption that $C \neq B$, so we can conclude that B = C

QED

Theorem 3 (Line intersection): Any two distinct lines intersect in at most one point.

Let *l* and *m* be distinct lines.

Suppose l and m intersect in more than one point.

That means there are at least 2 points in the intersection, so let A and B be two points in the intersection of l and m

Now, the line axioms says that there is one and only one line that contains the two points A and B, and hence l=m.

This contradicts the given the l and m are distinct lines.

Therefore, l and m can intersect in at most one point.

QED

Theorem 4: If f is an isometry and A, B, C are collinear (on the same line), then f(A), f(B), f(C) are collinear

proof:

Let f be an isometry, and let A, B, and C be collinear points.

By the between-ness axiom, one of A, B, or C must lie between the other two.

Without loss in generality, we may assume that B lies between A and C.

Since *B* lies between *A* and *C* on line AC, by the distance axiom we know that d(A,B) + d(B,C) = d(A,C) (1)

Because f is an isometry, we know that:

$$d(A, B) = d(f(A), f(B))$$
$$d(B, C) = d(f(B), f(C))$$
$$d(A, C) = d(f(A), f(C))$$

Substituting into line 1, we get d(f(A), f(B)) + d(f(B), f(C)) = d(f(A), f(C))

By the distance axiom, since this equation holds, we know that f(B) lies between f(A) and f(C), and all three points are collinear

QED

Theorem 5: If *f* is an isometry, and *X* is on the circle with center *P* and radius *r*, then f(X) is on the circle with center f(P) and radius *r*.

proof:

Let f be an isometry, and let X be a point on the circle with center P and radius r.

Since X is on the circle with center P and radius r, by definition of circle, we know that d(P, X) = r (1)

(2)

Since *f* is an isometry we know that d(P, X) = d(f(P), f(X))

By substitution with lines 1 and 2, we know that d(f(P), f(X)) = r

and hence, by definition of circle, f(X) lies on the circle with center f(P) and radius r.