## More compare practice

name

For each problem 1-4, tell which strategies are good choices (at least one of these has more than one good strategy):

a. Same denominator, b. Same numerator, c. Transitive, d. Residual

1. 
$$\frac{3}{8}$$
  $\frac{3}{5}$ 

2. 
$$\frac{5}{16}$$
  $\frac{9}{16}$ 

3. 
$$\frac{7}{9}$$
  $\frac{8}{10}$ 

4. 
$$\frac{3}{8}$$
  $\frac{11}{20}$ 

For problems 5-8, each answer is partially complete. Write additional sentences to make the answers complete:

5. 
$$\frac{5}{8}$$
 is less than  $\frac{5}{6}$  because sixths are bigger than eighths.

6. 
$$\frac{3}{5}$$
 is bigger than  $\frac{5}{12}$  because  $\frac{3}{5}$  is bigger than  $\frac{1}{2}$  and  $\frac{5}{12}$  is smaller than  $\frac{1}{2}$ .

7. 
$$\frac{7}{12}$$
 is greater than  $\frac{6}{12}$  because  $\frac{7}{12}$  has more pieces than  $\frac{6}{12}$ .

8. 
$$\frac{9}{12}$$
 is less than  $\frac{12}{15}$  because it needs more to make 1 whole.

10. For each of these examples, tell or draw what the unit whole is:





11. Which pairs of pictures could you use together to show that  $\frac{3}{4} = \frac{9}{12}$ 











12. Draw and explain the process of adding  $\frac{3}{4} + \frac{1}{3}$  using fraction circles by matching and trading.

13. Draw and explain the process of adding  $\frac{5}{6} + \frac{3}{5}$  using fraction squares or rectangles. Include explanations of finding equivalent fractions using the visual model and multiplication