1. Fill out the operation table for the permutation group S_3

$f \circ g$ do first (g) \rightarrow do second (f) \downarrow	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$						
$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$						
$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$						
$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$						
$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$						
$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$						

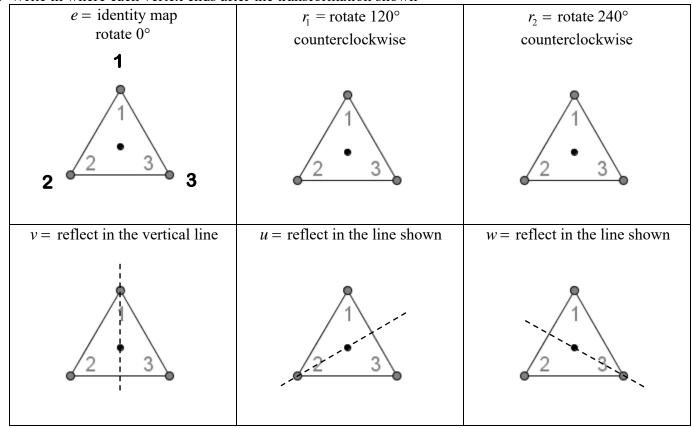
a. Is S_3 abelian? Give an example of this from your table.

b. What is the identity element for S_3 ?

c. List the inverses of each of these elements:

i.
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix}$$
 ii. $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & & \end{pmatrix}$
iii. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & & & \end{pmatrix}$ iv. $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & & & \end{pmatrix}$

2. Write in where each vertex ends after the transformation shown



Fill out the operation table for the dihedral group D_3 of rigid transformations of the equilateral triangle

$f \circ g$ do first (g) \rightarrow do second (f) \downarrow	е	<i>r</i> ₁	<i>r</i> ₂	v	и	w	Is D_3 abelian? How do you know?
е							What is the inverse of each element?
r_1							$e^{-1} = v^{-1} =$
r_2							$r_1^{-1} = u^{-1} =$
v							$r_2^{-1} = w^{-1} =$
и							
W							

Each of the elements can be written as a composition of r_1 and v. For example $r_2 = r_1 \circ r_1$. Find a way to get u and w using r_1 and v.