Some things about greatest common divisors that you should know and know how to prove:

Theorem GCD 1 If $a,b \neq 0$ then $1 \leq (a,b) \leq |b|$

proof: 1 divides evenly into every integer, so 1|a| and 1|b| and 1 is a common divisor of a and b, hence the greatest common divisor (a,b) must be at least at large as 1: $1 \le (a,b)$

The greatest common divisor (a,b) must be a divisor of b , so (a,b) | |b| and hence $(a,b) \le |b|$. Thus $1 \le (a,b) \le |b|$

Theorem GCD 2 If $a \ne 0$ and p is prime, then (a, p) = 1 or p

proof: The greatest common divisor (a, p) must be a divisor of p, so (by definition of prime) $(a, p) = \pm 1, \pm p$ and 1 divides evenly into every integer so $1 \le (a, p)$. Thus, (a, p) = 1 or p

Theorem GCD 3 If $a \neq 0$, p is prime and $p \nmid a$ then (a, p) = 1

proof: The greatest common divisor (a, p) must be a divisor of p, so (by definition of prime) $(a, p) = \pm 1, \pm p$ and 1 divides evenly into every integer so $1 \le (a, p)$. Thus, (a, p) = 1 or p.

Also, (a, p) must be a divisor of a, so $(a, p) \mid a$. We are given $p \mid a$, so (a, p) = 1.