Some theorems you need to know how to prove:

Theorem M1. If p is prime, then every non-zero element in \mathbb{Z}_p is a unit

Theorem M2. If p is prime, then \mathbb{Z}_p has no zero-divisors.

Theorem M3. If p is prime, and a and b are constants and $a \neq 0$ in \mathbb{Z}_p , then ax + b = 0 has a solution in \mathbb{Z}_p .

Theorem M4. If p is prime, and a, b and c are constants and $a \neq 0$ in \mathbb{Z}_p , then ab = ac implies b = c.

Theorem M5. If n is not prime, then there exists a zero-divisor in \mathbb{Z}_n .

Theorem M6. If a < n and (a,n) > 1 then a is a zero-divisor in \mathbb{Z}_n .

Theorem M7. If a < n and (a, n) = 1 then a is a unit in \mathbb{Z}_n .

Examples you need to know:

- 1. Find numbers a,b,c,n such that ab=ac , and $a\neq 0$ but $b\neq c$ in \mathbb{Z}_n
- 2. Find numbers a,b,n, where $a \neq 0$, such that ax + b = 0 has more than one solution in \mathbb{Z}_n .
- 2. Find numbers a,b,n , where $a \neq 0$, such that ax+b=0 has no solutions in \mathbb{Z}_n .