So here we go. Consider the following grade-school division problem:

Quotient
$$\longrightarrow$$
 11
DivisorCheck: $11 \leftarrow$ Quotient
 $\times 7 \leftarrow$ DivisorDividend $7 \over 12$ $\times 7 \leftarrow$ Divisor $12 \leftarrow$ $12 \leftarrow$ $12 \leftarrow$ Remainder $+5 \leftarrow$ Remainder $12 \leftarrow$ $12 \leftarrow$ Dividend

The division process stops when we reach a remainder that is less than the divisor. All the essential facts are contained in the checking procedure, which may be verbally summarized like this:

Here is a formal statement of this idea, in which the dividend is denoted by a, the divisor by b, the quotient by q, and the remainder by r:

Theorem 1.1 The Division Algorithm

Let a, b be integers with b > 0. Then there exist unique integers q and r such that a = bq + rand $0 \le r < b$.

Theorem 1.1 allows the possibility that the dividend a might be negative but requires that the remainder r must not only be less than the divisor b but also must be nonnegative. To see why this last requirement is necessary, suppose a = -14 is divided by b = 3, so that -14 = 3q + r. If we only require that the remainder be less than the divisor 3, then there are many possibilities for the quotient q and remainder r, including these three:

$$-14 = 3(-3) + (-5)$$
, with $-5 < 3$ [Here $q = -3$ and $r = -5$.]
 $-14 = 3(-4) + (-2)$, with $-2 < 3$ [Here $q = -4$ and $r = -2$.]
 $-14 = 3(-5) + 1$, with $1 < 3$ [Here $q = -5$ and $r = 1$.].

When the remainder is also required to be nonnegative as in Theorem 1.1, then there is exactly one quotient q and one remainder r, namely, q = -5 and r = 1, as will be shown in the proof.

The fundamental idea underlying the proof of Theorem 1.1 is that division is just repeated subtraction. For example, the division of 82 by 7 is just a shorthand method for repeatedly subtracting 7:

The subtractions continue until you reach a nonnegative number less than 7 (in this case 5). The number 5 is the remainder, and the *number* of multiples of 7 that were subtracted (namely, 11, as shown at the right of the subtractions) is the quotient.

In the preceding example we looked at the numbers

$$82 - 7 \cdot 1$$
, $82 - 7 \cdot 2$, $82 - 7 \cdot 3$, and so on.

In other words, we looked at numbers of the form 82 - 7x for $x = 1, 2, 3, \dots$ and found the smallest nonnegative one (namely, 5). In the proof of Theorem 1.1 we shall do something very similar.

8.7+1=57 04148 -9 R Z because 5(-9)+2=-43 0 4 2 < 5