Images and kernels Some Theorems and some Homework

| —FilLin-themissinoti » ;
Prove: Theorem 75: If R and S are rings, and f : R — S is a ring homomorphism, then f(0,)=0, where 0, is

the additive identity in R, and O, is the additive identity in S.
Proof: 0,+0, =0,

So f(0,+0,)=f(0,) because fis a well defined function,
And f(0,+0,)=f(0,)+ f(0,) because
So f(0)+£(0,)=/(0,)

So f(0,)+ f(0,)+(=f(0,))= f(0,)+(=f(0,)) because S is a ring and elements in S have additive inverses.
Thus f(0,)+0, =0, and therefore f(0,)=0,

> Eillinthemissinefines intl :

Prove Theorem 76: If R is a ring that has a multiplicative identity 1, , and S is a field whose multiplicative

identity is 1, and f:R — S is a ring homomorphism and there is some @ € R such that f(a)# 0, then

Sp) =1

Proof: a-1,=a

So f(a-1z)=f(a)

And because fis a homomorphism

So f(a)- f(1z) = f(a)

So (f(@)) "~ f(@)-f(1)=(f(@) " f(a) because Sis a and elements in S have -
Thus , and therefore f(1,) =1,

3. Fillinthemissine lineof il :

Prove Theorem 77: If R and S are rings, and f : R — S is a ring homomorphism and a € R , then

f(=a)=—-f(a)

Proof: a+-a=0,

So, fla+-a)=f(0)

And because f'is a homomorphism
So f(a)+ f(=a)= f(0;)

And f(a)+ f(-a)=0, by theorem 75

So —f(a)+ f(a)+ f(-a)=—f(a)+0;

And 0, + f(-a)=—f(a)

Therefore f(—a)=—f(a)




4. Proving Theorem 53/78: If R and S are rings, and f : R — § is a ring homomorphism, then
f(R)={f(x)| xe R} < Sisasubring of S.
Proof:
first: show that f(R) is closed under addition
Let f(a),(b) € f(R)
then a,b € R
and f(a)+ f(b)= f(a+b) because fis a homomorphism,
and a+beR,so f(a+b)e f(R)
So f(a)+ f(b)e f(R)
second: show has f(R) additive inverses
Let f(a)eR
then a € R and therefore —a€ R, so f(—a)e f(R)
by theorem 77, we know f(—a)=—-f(a),so —f(a)e f(R)
third: show f(R)is closed under multiplication

Finish the proof of theorem 53/78 by doing the third part:
show f(R)is closed under multiplication

5. Proving Theorem 79: If R and S are rings, and f : R — S is a ring homomorphism, then ker(f) < R is an
ideal in R.

Proof:
first: prove ker(f) is closed under addition
Let a,b eker(f)
then f(a)=f(b)=0
And f(a+b)= f(a)+ f (D) because fis a homomorphism
Therefore f(a+b)=f(a)+ f(b)=0+0=0
so a+beker(f)
second: prove ker(f)includes additive inverses
Let a e ker(f)
—ae€R and f(—a)=-f(a) by theorem 77
So f(—a)=—f(a)=—0=0
Therefore —a € ker(f)

Finish the proof of theorem 79 by showing the third part:
prove that ker( f) multiplicatively absorbs elements of R



6. Proving Theorem 80 (First Isomorphism Theorem): If R and S are rings, and f : R — S is a surjective (onto)
ring homomorphism, then R/ker(f)= S with isomorphism @(r +ker(f)) = f(r) where

r+ker(f)e R/ (ker(f))

Proof: First show ¢ is a well-defined function:
Suppose r +ker(f),s+ker(f)e R/ker(f) such that r+ker(f)=s+ker(f)

then s—r =i € ker(f)

So f(s—r)=f(s)+ f(—r)= f(s)+—f(r) because fis a homomorphism
butalso f(s—r)= f(i)=0

So f(s)=f(r)=0

And thus f(s)= f(r)

Therefore @¢(s+ker(f))=f(s)=f(r)=¢(r+ker(f))

and hence, f'is a well-defined function
Second, show ¢ is onto:
Let seS§

Then, because f'is surjective, there exists an » € R such that f(r)=s
Now r+ker(f)e R/ker(f)

and ¢g(r +ker(f))= f(r)=s

so ¢ is onto.

Third, show ¢ is one-to-one
Let r+ker(f),s+ker(f)e R/ker(f) such that ¢(r+ker(f)) = (s +ker(f))

Then f(r) = f(s)

So f(r)=f(s)=0

But f(r)=f(s)=f(r)+ f(=8)=f(r+=s)=f(r—s)
So f(r—s)=0

And by definition, r —s € ker(f)

And therefore » =5 (mod ker( f))

so r+ker(f)=s+ker(f)

And therefore, ¢ is one=to-one.
Fourth show ¢ preserves addition:
Let r+ker(f),s+ker(f) e R/ker(f)

Then ¢((r +ker(f))+(s+ker(f))=d((r+s)+ker(f))=f(r+s)

And ¢(r +ker(f)) +¢(s +ker(f)) = f(r)+ f(s)

and f'is a homomorphism, so f(r+s) = f(r)+ f(s)

Therefore (by the transitive property) @((r +ker(f))+(s+ker(f))) =d(r+ker(f))+ (s +ker(f))

So ¢ preserves addition.
Fourth show ¢ preserves multiplication:

$((r+ker(f))- (s +ker(f))) = §((r-s) +ker(f)) = f(r-s)

And ¢(r+ker(f))- (s +ker(f)) = f(r)- f(s)

and f'is a homomorphism, so f(r-s)= f(r)- f(s)

Therefore (by the transitive property) #((r +ker(f))- (s +ker(f))) =@(r+ker(f))-@(s+ker(f))
So ¢ preserves multiplication.



7. Proving Theorem 81: If f(x) € F[x]is an irreducible polynomial with coefficients in the field F, then
x]/(f(x)) is a field.

By theorem 74, we already know that F[x]/(f(x)) is a ring.

Commutativity:
Because F'is a field, it is commutative, and since x by definition commutes with every element of F, we can
conclude that F[x] is commutative.

To simplify the notation, we will use the notation [g], = g(x)+( f(x)) € F[x]/(f(x)) for any
By theorem 73, if [g],[h], € F[x]/( f(x)),

then [g], -[2], =[g-h],

Using commutativity of F[x], [g],-[h], =[g-h], =[h-g], =[h], [g],

Thus F[x]/(f(x)) is a commutative ring.

Multiplicative identity:
F has a multiplicative identity 1, and that identity will also be the multiplicative identity for F|x]

Let [g], = g(x)+(f(x)) e F| x]/(f(x)) then
[g], -0, =[g-1], =[g], =[1-g], =[], -[g],
so [1], =1+( f(x)) is the multiplicative identity for F[x]/(f(x))

All non-zero elements are units
Let [g], = g(x)+(f(x)) e F[x]/(f(x)), such that [g], #[0],, which means g(x) & (f(x)) and f(x)/g(x)
Then g(x)and f(x) have a greatest common divisor, d(x) in F[x], and by theorem 58, there exist
polynomials u(x),v(x) € F[x] such that d(x)=u(x)f(x)+v(x)g(x)
Now, d(x) is a divisor of f(x), and because f(x)is irreducible, then either d(x)=1, or d(x) is an associate
of f(x)
Suppose d(x) is an associate of f(x)
Then d(x)=c- f(x) where ce Fand ¢ #0
But d(x)=c- f(x) is also a divisor of g(x), which means that f(x)|g(x), but this contradicts
[g], #[0],
Therefore, d(x) =1
Thus we get 1 =u(x) f(x)+v(x)g(x)
and u(x) f(x) e (f(x))
Therefore v(x)g(x) =1+u(x)f(x) e1+(f(x))=[1],
And hence [v], -[g], =[1],
Therefore, [g], is a unit, and F[x]/(f(x)) is a field.



9. Proving Theorem 82: If f(x) € F[x] is an irreducible polynomial with coefficients in a field F such that
Qc F<C,and a e C such that f(a)=0then ¢: F[x]/(f(x)) > F(a) defined by ¢(g(x)+(f(x)))=g()
is an isomorphism and F[x]/ (f(x)) =~ F(a).

Proof:

We will begin by defining a function  : F[x] — F(a) such that (g(x)) = g(a)

Note that for any g(x) € F[x], the number g(er) is computed by adding, subtracting and multiplying elements
in F(a) (which is a field that contains « and the elements of F'), so g(a) € F (@) (so y is a well defined

function).

Let g(x),h(x) € F[x]

Then w(g(x)+h(x)) = g(a) + h(a) = w(g(x)) +y (h(x))
And y(g(x)-h(x)) = g(@)-h(a) =y (g(x)) -y (h(x))

So y is a homomorphism

Let K =y (F[x]) < F(a) be the range of y

Then, by the first isomorphism theorem, F[x]/ker(y)= K , where ¢( g(x)+ ker(l//)) =w(g(x))=g(a) is the

isomorphism. (1)

Next, we will show that ker(y) =( f(x)):

We know w(f(x)) = f(a)=0,s0 f(x)eker(y)

Also, if h(x) f(x) e (f(x)), then w(h(x)f(x))=h(a)f(a)=h(a)-0=0, so (f(x)) c ker(y)

Let g(x) eker(y), so w(g(x))=g(a) =0

Then g(x)and f(x) have a greatest common divisor, d(x) in F[x], and by theorem 58, there exist
polynomials u(x),v(x) € F[x] such that d(x)=u(x)f(x)+v(x)g(x) 2
Now, d(x) is a divisor of f(x), and because f(x)is irreducible, then either d(x) is a non-zero constant, or
d(x) is an associate of f(x)

We can substitute in o into (2) to get d(a) =u(a) f(a)+v(a)g(a) =u(ax)-0+v(a)-0=0, so d(x) cannot be a

non-zero constant.
Therefore d(x)=c- f(x) where ce Fand c#0

We know that d(x)|g(x),so f(x)]g(x),s0 g(x)e(f(x))
Therefore ker(y) = (f(x)) and hence (f(x)) = ker(y)

Substituting into (1), we have that F[x]/(f(x))= K where the isomorphism is ¢(g(x)+(f(x)))=g(a) (3)
By theorem 53/78, we know that K is a ring. Because Q < F < K < C, we know that K is commutative and

contains a multiplicative identity.
Let a € K suchthat a #0, then a =y (g(x)) =g(a) for some g(x) € F[x]

g(@)#0 so g(x)eker(y)=(/(x)),s0 [g], = g(x)+(f(x)) is anon-zero element of F[x]/(f(x))
By theorem 77, we know that F[x]/(f(x)) is a field, so [g], #[0],, has a multiplicative inverse
[h], € F[x]/(f(x)) such that [g] [#], =1,

¢ is a homomorphism, so ¢([g] [#],)=¢([1],)=1€ K



and ¢([g], -[h],) = P((g],) P([h],) = g(a)h(a) = a-h(a)
h(a)e K and a-h(a)=1, so a has a multiplicative inverse in K.

Therefore every non-zero element of K has a multiplicative inverse, and K is a field.
Note thatif a € F', then w(a)=ae K ,so Fc K

Also note that w(x)=a e K
So K is a field that includes F and includes a and K =y (F[x]) € F(«)
But F(«) is defined to be the smallest subfield of C that contains both ' and a, so F(a)=K

Finally, substituting into (3), we conclude that F[x]/( f(x))= F(a)



