April 25,2020
Abstract Algebra Definitions and Theorems

Definition A group is a set of elements G together with a binary operation # that have the

properties:

1. Closure: If a,b € G then a#be G

2. Associativity: If a,b,c € G then a#(b#c)=(a#b)#c

3. Identity under #: There is an element e € G such that if a € G then a#e=e#a=a
4

. Inverses under #: For each a € G there is an element ¢ ' € G such that

1

a#ta'=a'#a=e.

As a default, we will use multiplication as the group operation, in which case the above
properties are written:

1. Closure: If a,be G then abe G
2. Associativity: If a,b,c € G then a(bc) = (ab)c

3. Identity: There is an element e € G such that if @ € G then ae=ea=a

4. TInverses: For each @ € G there is an element ¢ ' € G suchthat aa ' =a'a=e.

But don’t use the commutative law unless it is an Abelian group!

Definition: a group G, with operation # is an Abelian (commutative) group if for every a,b € G
then a#b=>b#a. The default operation symbol for an Abelian group is +.

*Theorem 1: Function composition is associative.
*Theorem 2: If G is a group, then the identity element e is unique.
Unique means that e is the only element of G that has the identity property (group: property 3)

*Theorem 3: If G is a group, then every element of G has a unique inverse.

*Theorem 4: If G is a group and a,b € G then (ab)' =b"'a”’

*Theorem 5: If Gis a group and a € G then (a™") ' =a

Definition If G is a group, and H < G is a subset of G, such that H is a group, then H is a
subgroup of G.

Theorem 6: If G is a group, and H < G is a non-empty subset of G such that

1. Hisclosed: if a,be H then abe H

2. The inverse of every element in H is also in H: If a € H then there is an element a™' € H

1

suchthat aa ' =a'a=¢

Then H is a subgroup of G.

prove theorem 6 by explaining why all 4 of the group properties must be true for H.
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Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest
element.

Theorem 7: Let a€Z and be Z" (b is a positive integer), then there exist unique integers ¢, r
such that a =bg+r and 0<r<b

Definition: Let a and b be integers where not both are zero, then d = gcd(a,b) is the greatest
common divisor of a and b, which means:

e dlaand d|b

e Ifc|a and c|b then c<d
Note: our textbook writes (a,b) = gcd(a,b)

Theorem 8 (1.2): Let @ and b be integers where not both are zero, and d = gcd(a,b) . There exist
u,veZ such that d =au+bv

*Theorem 9 (1.3): Let a and b be integers where not both are zero, and d = gcd(a,b). Then if
c¢la and c|b then c|d

*Theorem 10 (1.4): Let a,b,c € Z such that a|bc and ged(a,b) =1 then a|c
hint: consider ¢-1=c(au+bv)

*Theorem 11: Let a,b,c € Z, and let d = gcd(a,b). Then ax+ by = ¢ has integer solutions if
and only if d | ¢ (pg. 16 # 24)

Definition: Let p be an integer such that p # 0,£1, then p is prime means:
Given b,ce Z ,if p|bc then p|b or p|c

Definition: Let p be an integer such that p # 0,£1, then p is irreducible means the only divisors
of p are £1 and £p

*Theorem 12: An integer p be an integer such that p # 0,+£11s prime if and only of it is
irreducible.

*Theorem 13 (1.6): Let p be a prime integer and let p|a,a,...a, then p divides at least one of the

factors a, .
Theorem 14(1.7): Every integer n except 0,%1 is a product of primes.

Theorem 15 (Fundamental Theorem of Arithmetic, 1.8): If n€Z and n# 0,+1 thennisa
product of primes, and the prime factorization is unique in the sense that if
n=pipy-p, and n=gqq,..q,
such that all of the p, and ¢, are prime,
then r =s and the g, factors can be re-ordered such that p, =+g,

(We can use a permutation to write f :{l1,2,...s} = {1,2,...s} is a permutation, and p, =+q, )
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Definition: Let a, b, n be integers, with n>0, then a is congruent to » modulo n if n|(h—a).
This is most often written a =5 (mod n) . If it is clear from the context of the problem, that all

numbers are to be considered mod 7, you will sometimes see a=b or a=>b.
*Theorem 16: Let a, b, n be integers, with n>0, then

a) a=a (modn)
b) If a=b (modn)then b=a (modn)
c) If a=b(modn)and b=c (modn), then a=c (modn)

Definition: Let @, b, n be integers, with 7 >0, then the congruence class of « modulo # is the
set of all integers congruent to a modulo n. Sometimes we write [@] or [a],, and the equivalence

class is defined to be {b|beZ and b=a(modn)}.
Theorem 17: [a], =[c], if and only if a=c (modn)
*Theorem 18: If a=b (modn)and c=d (modn) then

a) a+c=b+d (modn)
b) ac=bd (modn)

Definition: The set of all congruence classes modulo 7 is denoted Z , , which is called “Z-n” or

the “integers mod n” or “mod n numbers”. Elements of Z  are sometimes written as [a], or [a]

but usually they are just written a. Each congruence class has a simplest form, which is the
element of the equivalence class in the range 0 <a <n. In most cases, you should give answers
to questions in Z , in simplest form.

Definition: Two integers are relatively prime if their greatest common divisor is 1.

*Theorem 19: The element a € Z, has a multiplicative inverse b e Z, if and only if a and n

are relatively prime.

*Theorem 20: Z ,+ is a group (under addition)

Definition: The set of elements of Z , that have multiplicative inverses is called U, . In set

notation: U, ={ae€Z, |ab=1forsomebeZ,}

*Theorem 21: U ,- is a group (under multiplication)

* Theorem 22: 7 *={a€eZ, |a ;’:Z 0}, the set of non-zero elements of Z ,, where p is prime, is a

group under multiplication.
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Definition/Notation: If G is a group with operation written as multiplication, and a € G then
a’ =aa and a" = aa...a if nis a positive integer. a" =a'a”'..a” if nis a negative integer and
—_— e ——

n factors In| factors

a’ = e where e is the identity.

+m

Theorem 23: If G is a group and a € G then a"a" =a"
prove the theorem for the cases:

a) n=0orm=0

b) n>0and m>0

¢) n<0and m<0

d) n>0and m<0,and n>m
e) n>0and m<0,and n<m
f) n<0and m>0,and n>m
g) n<0and m>0,and n<m

Definition: The order of a group is the number of elements in the group.

Definition: In a group G with element a € G, if " = e for some integer 7> 0, then the element
a has finite order. If k& is the smallest positive integer such that a" = e, then a has order £. If
a" # e for every positive integer n, then a has infinite order.

* Theorem 24: If G is a group and a € G such that a’ = a’ for two distinct integers i # j, then a
has finite order.

* Theorem 25: If G is a group and a € G such that " = e, then the order of a is a divisor of n.

*Theorem 26: If G is a group and a € G such that a has order n, then a' = a’ if and only if
n|(j—i)

Definition: In a group G with elements a,b € G, the set <a > G is the smallest subgroup of G
that contains a, and < a,b > is the smallest subgroup of G that contains both a and b.

* Lemma 27: In a group G (with the default multiplicative notation for the binary operation),
and a € G then {a" |n€Z} is asubgroup of G.

Theorem 28: In a group G (with the default multiplicative notation for the binary operation), and
aeG then {a" |neZ}=<a>

Definition: A group G is commutative if for every pair of elements a,b € G, ab=ba. A
commutative group is also called an abelian group.

Theorem 29: In a group G, with element a € G, then <a > is an abelian group.

Definition: In a group G, with element a € G, the subgroup < a > is called a cyclic group.
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Theorem 30: If Gisa group and a € G has infinite order, then all of the elements a” where
ne are distinct.

Definition: Given a group G with operation * and H is a group with operation #, and f:G — H
is a relation that pairs elements of G with elements of H. The relation fis a function if each
element of G is paired with a unique element of H.

Definition: Given a group G with operation * and H is a group with operation #, and f:G > H

is a function. The function fis called a homomorphism if it preserves the group operation,
which means for any a,be G, f(a*b)= f(a)# f(b)

Definition: Given sets S and 7, a function f:S§ — T is 1-to-1 if for every a,be S, if
f(a)= f(b) then a=b. A 1-to-1 function is called an injection.

Theorem 31: Given sets S and 7, a function f:S — T is an injection if and only if , for every
teT theset f'(t)={se S| f(s)=¢} contains at most one element.
Definition: Given sets S and 7, a function f:S — T is onto if for every ¢ €T, there exists an

element s €S such that f(s)=¢. An onto function is called a surjection

Theorem 32: Given sets S and 7, a function f:S — T is a surjection if and only if every t €T

the set /' (t)={s eS| f(s)=t} contains at least one element.

Definition: A function that is both an injection and a surjection is called a bijection.

Definition: Given groups G and H, and function f:G — H , then fis an isomorphism if it is a
bijective homomorphism.

Theorem 33: A cyclic group with finite order » is isomorphic to the group Z A with operation

addition.

Theorem 34: A cyclic group with infinite order is isomorphic to the group Z with order
addition.

*Theorem 35: Given groups G and H, and a homomorphism f:G — H , then
f(G)={f(x)|xe G} < H is a subgroup of H.
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Definition: A ring is a set of elements R together with two binary operations that are denoted as
addition (+) and multiplication ( Xor - ) with the properties:

1) R is closed under addition: if a,beRthen a+beR

2) Addition is associative: if @,b,c €R then (a+b)+c=a+(b+c)

3) Addition is commutative: if @,b€R then a+b=b+a

4) R has an additive identity: there exists an element 0 € Rsuch that 0+a=a
5) Every element in R has an additive inverse: if a € Rthen —a € R such that a+—-a =0
6) R is closed under multiplication: if a,b € Rthen abeR

7) Multiplication is associative: if @,b,c € R then (ab)c =a(bc)
8) Multiplication is distributive over addition: if @,b,c € R then a(b+c)=ab+acand
(b+c)a=ba+ca

Definition: A ring R is a commutative ring if multiplication is commutative. That is: if @,b€R
then ab=ba

Definition: A ring, R, is a ring with identity or a ring with unity if it has a multiplicative
identity: i.e. If there exists an element 1€ R such that l-a=a-1=a forall aeR

Theorem 36: Z , is a commutative ring.

Theorem 37: If R,+,- is aring, then R,+ is an abelian group

*Theorem 38: If R,+,- isaring, and ae R then a-0=0-a =0 (hint: 0+0=0)

Definition: Given a ring R with identity, then an element a € Ris a unit if it has a multiplicative
inverse in R: i.e. @ € Ris a unit if there exists an element @' €R such that a-a”' =a ' -a=1

Definition: Given a ring R, then an element a € Ris zero-divisor if it is one of a non-zero pair
of elements whose product is 0: i.e. @ € R is a zero-divisor if there is an element b € R such that
a#0 and b#0 and ab=0 or ba=0.

(*) Theorem 39: The additive identity of a ring R is unique.

*Theorem 40: The multiplicative identity of a ring with identity (R) is unique. (Hint: if there
were two identities, what would their product be?)

(*) Theorem 41: For any element a of a ring R, the additive inverse of a is unique.

*Theorem 42: For any unit a of a ring R, the multiplicative inverse of a is unique.

*Theorem 43 Prove that any element a of a ring R can’t be both a unit and a zero divisor.
Definition: A commutative ring with identity, R, is an integral domain if it has no zero-divisors

Definition: A field is a commutative ring with identity, where all of the non-zero elements are
units.
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Definition: If R is a ring, then a subset S < R is a subring of R if it is a ring (using the same

operations that are defined for R).

Theorem 44: If R is a ring, then a subset S < R is a subring of R if it satisfies the conditions:

i.  Sis closed under addition (if a@,b €S then a+beS)
ii.  Sis closed under multiplication (if @,b €S then abeS)

iii.  every element of S has an additive inverse in S (if a €S then —a € S where a+—-a=0)
* Theorem 45: If a,b€R then a(-b)=—(ab) and (—a)b=—ab)
* Theorem 46: If ac R then —(—a)=a
* Theorem 47: If a,b€R then (a+b)=—a+-b

* Theorem 48: If a,b €R then (—a)(—b)=ab

Definition: Saying that ring R, has the multiplicative cancellation property means: for
a,b,ceR . if ab=ac or ba=ca then b=c

* Theorem 49: A ring R has the multiplicative cancellation property if and only if R has no zero
divisors.

* Theorem 50 If S < R and T < R are both subrings of R, then S N T is a subring of R.
Definition: If R and S are rings and f : R — § is a function and a,b € R, then f'is a ring

homomorphism if f(a+b)= f(a)+ f(b) and f(ab)= f(a)[f (D).

Definition: If R and S are rings and f : R — S is a function, then f'is a ring isomorphism if it is
a ring homomorphism, and it is one-to-one and onto.

Theorem 51: If R and S are rings, and f : R — S is a ring homomorphism, and if we name the
additive identities of R and S to be 0, and O, respectively, then f(0,) =0,

Theorem 52: If R and S are rings, and f : R — S is a ring homomorphism, anda € R , then
f(=a)==f(a).

Theorem 53: If R and S are rings, and f : R — S is a ring homomorphism, then
f(R)={f(x)| xe R} < Sisasubring of S.
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Theorem 54: If R is aring and a € R then the set aR ={ax|x € R} C R is a subring of R and the

set Ra={xa|xe€ R} R is a subring of R.

Theorem 55: Given a ring R, we can adjoin a formal element x to create a ring R[x] of formal

polynomials with coefficients in R with the following properties:
e Risasubring of R[x]

e If aeR then ax=xa (note: elements of R commute with x, but they don’t necessarily
commute with each other)
e Every element has a unique representation as a polynomial.

Definition: The degree of a polynomial p(x) € R[x] is the highest exponent that has a non-zero
coefficient.

Theorem 56: If F'is a field and f(x), g(x) € F[x]such that g(x) = 0 then there exist unique
g(x),r(x) e F[x] such that f(x)=g(x)q(x)+r(x) and deg(r(x)) < deg(g(x))or r(x)=0.

Definition: If f(x),g(x) e F[x], then f(x)|g(x) means there exists 4(x) € F[x] such that
g(x) = f(x)h(x).

Definition: If R is a ring with identity, then a monic polynomial in R[x] is a polynomial whose

leading coefficient is 1. (Note: the leading coefficient is the coefficient of the term with the
highest power of x)

Definition: If F'is a field, and f(x),g(x) € F[x], then f(x) and g(x) are associates if
f(x)=cg(x) where ce F and ¢ #0.

Theorem 57: If F'is a field and f(x) e F[x], then f(x) has a unique associate which is a monic
polynomial.

Definition: If f(x),g(x) € F[x] such that not both of /" and g are 0, then the greatest common
divisor of / and g is the monic polynomial of highest degree that divides both f(x) and g(x).

Theorem 58: If F'is a field, and f(x), g(x) € F[x] such that f(x)#0 or g(x)#0, then there is
a unique greatest common divisor d(x)=ged(f(x),g(x)), and there exist polynomials
u(x),v(x) € F[x] (not necessarily unique) such that d(x)=u(x) f(x)+v(x)g(x)

Definition: Let F be a field and let p(x) € F[x] be a non-constant polynomial, then p(x) is
irreducible if its only divisors are non-zero constants and its associates.

*Theorem 59 (factor theorem): If Fis a field, a € F and f(x) e F[x] then f(a)=0ifand
only if (x—a)| f(x)

Theorem 60: Let /' be a field and let f(x) € F[x] be a non-constant polynomial, then f(x) is
factorable into irreducible polynomials, and that factorization is unique up to associates.
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Theorem 61 (remainder theorem): If F'is a field, a € F and f(x), g(x) € F[x] such that

deg(g(x))=1and g(a)=0. Let r(x) e F[x] be the remainder polynomial that satisfies
f(x)=g(x)q(x)+r(x) and deg(r(x)) < deg(g(x))or r(x)=0. Then r(x)is a constant and
fla)=r(x).

Theorem 62 (Fundamental Theorem of Algebra): Every polynomial in C[x] has a complex
root (that is, if f(x) e C[x] and deg(f(x)) > 0 then there exists a number a € C such that
f(a)=0.

Theorem 63 (Corollary to the Fundamental Theorem of Algebra): Every polynomial in
C[x] 1s factorable into degree 1 polynomials.

Definition: If / — R is a subring of R, and if for any i €/ and » € R then ir € I and ri e I, then
1 1s called an ideal

Theorem 64: If / is a non-empty subset of R, then / is an ideal if:

i.  [Iis closed under addition (if a,b€l then a+bel)

ii.  Every element of / has an additive inverse in [ (if a €l then —a €l where a+—-a=0)
iii. [ absorbs elements of R under multiplication: ifa € / and ¥ € R then irel and riel

*Theorem 65: If R is a commutative ring and ¢ € R, then cR = {cx|x € R} is an ideal in R.

Definition: If R is a commutative ring that has a (multiplicative) identity, and ¢ € R, then
cR = {cx| x € R} is a principal ideal of R. This ideal has two standard representations: in

addition to cR the textbook uses the notation: (¢) to represent the principal ideal generated by c.
This notation is particularly common when talking about principal ideals in a polynomial ring.

Definition: If / is an ideal in a ring R, and a € R then the coset a + I — R is the set:
a+l={a+x|xel}

Theorem 66: If / is an ideal in a ring R, then every element a € R is in some coset of /, and in
particular, a e a+1

Theorem 67: : If / is an ideal in a ring R, and a + I shares an element with 4+ / then
a+l=b+1

Note: The contrapositive of theorem 67 says that if the cosets are not equal, then they are
disjoint, which means they do not share any elements

Definition: If / is an ideal in a ring R, and a,b € R then a is congruent to » modulo 7 if
b+(—a)el . We write a=b (mod 1)
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Theorem 68: If / is an ideal in aring R, and a€ R then a=a (mod /)

Theorem 69: If / is an ideal in a ring R, and @,b € R such that a=b (mod/) then b=a (mod/)

Theorem 70: If / is an ideal in a ring R, and a,b,c € R such that a=b (mod/) and
b=c (mod/) then a=c (mod/)

Theorem 71: If / is an ideal in aring R, and a € R then a+/={x|x€R and a=x}

Theorem 72: If / is an ideal in a ring R, and a,b,c,d € R such that a=b (mod/) and
c=d (mod/) then a+c=b+d (modl).
Note: This is equivalent to: (a+1)+(b+1)={a+i+b+j|i,jelic(a+b)+]

Theorem 73: If / is an ideal in a ring R, and a,b,c,d € R such that a=b (mod/) and
c=d (mod/l) then ac=bd (modI)
Note: This is equivalent to: (a+1)b+1)={(a+i)b+))|i,jel}c(ab)+1

Definition: If / is an ideal in a ring R, and, then the set of cosets consists of all of the cosets of /

Theorem 74: If / is an ideal in a ring R, then the set of cosets of / is also a ring, where addition
and multiplication are defined by (a+1)+(b+1)=(a+b)+1 and (a+I1)b+1)=(ab)+1.We

call R/ the quotient ring of R mod I. We write R// ={a+1|acR}

10
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Theorem 75: If R and S are rings, and f : R — S is a ring homomorphism, then f(0,)=0,
where 0, is the additive identity in R, and O is the additive identity in S.

Theorem 76: If R is a ring that has a multiplicative identity 1, , and S'is a field whose
multiplicative identity is 1, and f : R — .S is a ring homomorphism and there is some a € R
such that f(a)#0, then f(1,)=1g

Theorem 77: If R and S are rings, and f : R — S is a ring homomorphism and a € R, then
f(=a)==f(a)

Theorem 53/78: If R and S are rings, and f : R — S is a ring homomorphism, then
f(R)={f(x)| xe R} < Sis asubring of S.

Definition: The kernel of a function on rings f : R — S is the set of all elements that map to 0:
ker(f)={xeR| f(x)=0g}
Theorem 79: If R and S are rings, and f : R — § is a ring homomorphism, then ker(f) c R is

an ideal in R.

Theorem 80 (First Isomorphism Theorem): If R and S are rings, and f : R — S is a surjective
(onto) ring homomorphism, then R/ker(f) = S with isomorphism @(r +ker(f)) = f(r) where

r+ker(f)e R/ (ker(f))

Theorem 81: If f(x) e F[x]is an irreducible polynomial with coefficients in the field F, then
F[x]/(f(x)) is a field.

Definition: If F is a field subfield of C, and a € C, then F(«) is the smallest subfield of C
that contains both F' and «

Theorem 82: If f(x)e F[x] is an irreducible polynomial with coefficients in a field F such that
Qc FcC,and a €C such that f(a)=0then ¢: F[x]/(f(x)) > F(«) defined by

¢(g(x) +(f(x))) = g(a) forevery g(x)+(f(x))e F[x]/(f(x)) is an isomorphism
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