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Abstract Algebra Definitions and Theorems 

Definition A group is a set of elements G  together with a binary operation # that have the 
properties: 

1. Closure: If ,a b G  then #a b G   

2. Associativity: If , ,a b c G  then #( # ) ( # ) #a b c a b c   

3. Identity under #: There is an element e G  such that if a G  then # #a e e a a    

4. Inverses under #: For each a G  there is an element 1a G   such that 
1 1# #a a a a e   . 

As a default, we will use multiplication as the group operation, in which case the above 
properties are written: 

1. Closure: If ,a b G  then ab G   

2. Associativity: If , ,a b c G  then ( ) ( )a bc ab c  

3. Identity: There is an element e G  such that if a G  then ae ea a    
4. Inverses: For each a G  there is an element 1a G   such that 1 1aa a a e   . 

But don’t use the commutative law unless it is an Abelian group! 

Definition: a group G, with operation # is an Abelian (commutative) group if for every ,a b G  

then # #a b b a . The default operation symbol for an Abelian group is +. 

*Theorem 1: Function composition is associative. 

*Theorem 2: If G is a group, then the identity element e is unique.   

Unique means that e is the only element of G that has the identity property (group: property 3) 

*Theorem 3: If G is a group, then every element of G has a unique inverse. 

*Theorem 4: If G is a group and ,a b G  then 1 1 1( )ab b a     

*Theorem 5: If G is a group and a G  then 1 1( )a a     

Definition If G is a group, and H G  is a subset of G, such that H is a group, then H is a 
subgroup of G. 

Theorem 6: If G is a group, and H G  is a non-empty subset of G such that  

1. H is closed: if ,a b H  then ab H    

2. The inverse of every element in H is also in H: If a H  then there is an element 1a H   

such that 1 1aa a a e    
Then  H is a subgroup of G. 

prove theorem 6 by explaining why all 4 of the group properties must be true for H. 
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Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest 
element. 

Theorem 7: Let a  and b   (b is a positive integer), then there exist unique integers ,q r  

such that a bq r   and 0 r b    

Definition: Let a and b be integers where not both are zero, then gcd( , )d a b  is the greatest 

common divisor of a and b, which means: 

 |d a  and |d b   

 If |c a  and |c b  then c d   

Note: our textbook writes ( , ) gcd( , )a b a b   

Theorem 8 (1.2): Let a and b be integers where not both are zero, and gcd( , )d a b . There exist 

,u v  such that d au bv    

*Theorem 9 (1.3): Let a and b be integers where not both are zero, and gcd( , )d a b . Then if 

|c a  and |c b  then |c d   

*Theorem 10 (1.4): Let , ,a b c  such that |a bc  and gcd( , ) 1a b   then |a c    

hint: consider 1 ( )c c au bv     

*Theorem 11: Let , ,a b c , and let gcd( , )d a b . Then ax by c   has integer solutions if 

and only if |d c  (pg. 16 # 24) 

Definition: Let p be an integer such that 0, 1p   , then p is prime means: 

Given ,b c , if |p bc  then |p b  or |p c   

Definition: Let p be an integer such that 0, 1p   , then p is irreducible means the only divisors 

of  p  are 1  and p    

*Theorem 12: An integer p be an integer such that 0, 1p   is prime if and only of it is 

irreducible. 

*Theorem 13 (1.6): Let p be a prime integer and let 1 2| ... np a a a  then p divides at least one of the 

factors ia .   

Theorem 14(1.7): Every integer n except 0, 1  is a product of primes. 

Theorem 15 (Fundamental Theorem of Arithmetic, 1.8):  If n  and 0, 1n    then n is a 

product of primes, and the prime factorization is unique in the sense that if  
 1 2... rn p p p   and 1 2... sn q q q   

such that all of the ip  and jq  are prime,  

then r s  and the jq  factors can be re-ordered such that i ip q    

(We can use a permutation to write :{1, 2, ... } {1, 2, ... }f s s  is a permutation, and ( )i f iqp  ) 
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Definition: Let a, b, n be integers, with 0n , then a is congruent to b modulo n if | ( )n b a . 

This is most often written (mod )a b n .  If it is clear from the context of the problem, that all 

numbers are to be considered mod n, you will sometimes see a b  or a b .  

*Theorem 16: Let a, b, n be integers, with 0n , then 

a) (mod )a a n  

b) If (mod )a b n then (mod )b a n  

c) If (mod )a b n and (mod )b c n , then (mod )a c n  

Definition: Let a, b, n be integers, with 0n , then the congruence class of a modulo n is the 
set of all integers congruent to a modulo n. Sometimes we write [ ]a  or [ ]na , and the equivalence 

class is defined to be }{ and (mod )| b ab b n  .  

Theorem 17: [ ] [ ]n na c  if and only if (mod )a c n  

*Theorem 18: If (mod )a b n and (mod )c d n  then  

a) (mod )a c b d n    

b) (mod )ac bd n  

Definition: The set of all congruence classes modulo n is denoted n , which is called “Z-n” or 

the “integers mod n” or “mod n numbers”.  Elements of n  are sometimes written as [ ]na  or [ ]a  

but usually they are just written a. Each congruence class has a simplest form, which is the 
element of the equivalence class in the range 0 a n  . In most cases, you should give answers 
to questions in n  in simplest form. 

Definition: Two integers are relatively prime if their greatest common divisor is 1. 

*Theorem 19: The element na  has a multiplicative inverse nb  if and only if a  and n  

are relatively prime. 

*Theorem 20: ,n   is a group (under addition) 

Definition: The set of elements of  n  that have multiplicative inverses is called nU . In set 

notation: { | 1 for some }n n nU a ab b      

*Theorem 21: ,nU   is a group (under multiplication) 

* Theorem 22: * { |pp a a   0}, the set of non-zero elements of p , where p is prime, is a 

group under multiplication. 
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Definition/Notation: If G is a group with operation written as multiplication, and a G  then 
2a aa  and 

n factors

...na aa a  if n is a positive integer.  
|n

1 1

| factors

1...na a a a     if n is a negative integer and 

0a e  where e is the identity. 

Theorem 23: If G is a group and a G  then n m n ma a a    

 prove the theorem for the cases: 

a) 0n  or 0m    
b) 0n  and 0m    
c) 0n  and 0m   
d) 0n  and 0m , and n m  
e) 0n  and 0m , and n m  
f) 0n  and 0m  , and n m  
g) 0n  and 0m  , and n m  

Definition: The order of a group is the number of elements in the group. 

Definition: In a group G with element a G , if na e  for some integer 0n , then the element 

a has finite order.  If k is the smallest positive integer such that na e , then a has order k. If 
na e  for every positive integer n, then a has infinite order. 

* Theorem 24: If G is a group and a G  such that i ja a  for two distinct integers i j , then a 

has finite order. 

* Theorem 25: If G is a group and a G  such that na e , then the order of a is a divisor of n. 

*Theorem 26: If G is a group and a G  such that a has order n, then i ja a  if and only if 
| ( )n j i  

Definition: In a group G with elements ,a b G , the set Ga   is the smallest subgroup of G 

that contains a, and ,a b   is the smallest subgroup of G that contains both a and b. 

* Lemma 27: In a group G (with the default multiplicative notation for the binary operation), 

and a G  then { }|na n  is a subgroup of G . 

Theorem 28: In a group G (with the default multiplicative notation for the binary operation), and 

a G  then }{ |na n a    

Definition: A group G is commutative if for every pair of elements ,a b G , ab ba . A 

commutative group is also called an abelian group.  

Theorem 29: In a group G, with element a G , then a   is an abelian group. 

Definition: In a group G, with element a G , the subgroup a  is called a cyclic group. 
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Theorem 30:   If G is a group and a G  has infinite order, then all of the elements na  where 
n   are distinct.   

Definition: Given a group G with operation * and H is a group with operation #, and :f G H  

is a relation that pairs elements of G with elements of H. The relation f is a function if each 
element of G is paired with a unique element of H.    

Definition: Given a group G with operation * and H is a group with operation #, and :f G H  

is a function. The function f is called a homomorphism if it preserves the group operation, 
which means for any ,a b G , ( * ) ( ) # ( )f a b f a f b   

Definition: Given sets S and T, a function :f S T  is 1-to-1 if for every ,a b S , if 

( ) ( )f a f b  then a b .  A 1-to-1 function is called an injection. 

Theorem 31: Given sets S and T, a function :f S T is an injection if and only if , for every 

t T  the set 1( ) | ( ) }{f t s S f s t    contains at most one element. 

Definition: Given sets S and T, a function :f S T  is onto if for every t T , there exists an 

element s S  such that ( )f s t . An onto function is called a surjection 

Theorem 32: Given sets S and T, a function :f S T  is a surjection if and only if every t T  

the set 1( ) | ( ) }{f t s S f s t    contains at least one element. 

Definition: A function that is both an injection and a surjection is called a bijection. 

Definition: Given groups G and H, and function :f G H , then f is an isomorphism if it is a 

bijective homomorphism. 

Theorem 33: A cyclic group with finite order n is isomorphic to the group n  with operation 

addition. 

Theorem 34: A cyclic group with infinite order is isomorphic to the group   with order 
addition. 

*Theorem 35: Given groups G and H, and a homomorphism :f G H , then 

( ( }) { ) | Hf G f x x G   is a subgroup of H.  
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Definition: A ring is a set of elements R  together with two binary operations that are denoted as  
addition (+) and multiplication (or  ) with the properties: 

1) R is closed under addition: if ,a b R then a Rb   

2) Addition is associative: if , ,a b c R  then ( ) ( )a b c a b c      

3) Addition is commutative: if ,a b R  then a b b a    

4) R has an additive identity: there exists an element 0 R such that 0 a a   
5) Every element in R has an additive inverse: if a R then Ra  such that 0a a   

6) R is closed under multiplication: if ,a b R then ab R  

7) Multiplication is associative: if , ,a b c R  then ( ) ( )ab c a bc  

8) Multiplication is distributive over addition: if , ,a b c R  then ( )a b c ab ac   and 

( )b c a ba ca    

Definition: A ring R is a commutative ring if multiplication is commutative.  That is: if ,a b R
then ab ba  

Definition: A ring, R, is a ring with identity or a ring with unity if it has a multiplicative 
identity: i.e. If there exists an element 1 R  such that 1 1a a a     for all a R   

Theorem 36: n  is a commutative ring. 

Theorem 37: If , ,R   is a ring, then ,R   is an abelian group 

*Theorem 38: If , ,R   is a ring, and a R  then 0 0 0a a     (hint: 0+0=0) 

Definition: Given a ring R with identity, then an element a R is a unit if it has a multiplicative 

inverse in R: i.e. a R is a unit if there exists an element 1a R   such that 1 1 1a a a a       

Definition: Given a ring R, then an element a R is  zero-divisor if  it is one of a non-zero pair 
of elements whose product is 0: i.e. a R  is a zero-divisor if there is an element b R  such that 

0a  and 0b  and 0ab  or 0ba  . 

(*) Theorem 39: The additive identity of a ring R is unique. 

*Theorem 40: The multiplicative identity of a ring with identity (R) is unique. (Hint: if there 
were two identities, what would their product be?) 

(*) Theorem 41: For any element a of a ring R, the additive inverse of a is unique. 

*Theorem 42: For any unit a of a ring R, the multiplicative inverse of a is unique. 

*Theorem 43 Prove that any element a of a ring R can’t be both a unit and a zero divisor. 

Definition: A commutative ring with identity, R, is an integral domain if it has no zero-divisors 

Definition: A field is a commutative ring with identity, where all of the non-zero elements are 
units. 
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Definition: If R is a ring, then a subset S R  is a subring of R if it is a ring (using the same 

operations that are defined for R ). 

Theorem 44: If R is a ring, then a subset S R  is a subring of R if it satisfies the conditions: 

i. S is closed under addition (if ,a b S  then a Sb  ) 

ii. S is closed under multiplication (if ,a b S  then ab S ) 

iii. every element of S has an additive inverse in S (if a S  then Sa   where 0a a   ) 

* Theorem 45: If ,a b R  then ( ) ( )a b ab   and ( ) ( )a b ab    

* Theorem 46: If a R  then ( )a a     

* Theorem 47: If ,a b R  then ( )a b a b      

* Theorem 48: If ,a b R  then ( )( )a b ab     

Definition: Saying that ring R, has the multiplicative cancellation property means: for 
, ,a b c R , if ab ac  or ba ca  then b c   

* Theorem 49: A ring R has the multiplicative cancellation property if and only if R has no zero 
divisors. 

* Theorem 50  If S R  and T R  are both subrings of R, then S T  is a subring of R. 

Definition: If R and S are rings and :f R S  is a function and ,a b R , then f is a ring 

homomorphism if ( ) ( ) ( )f a b f a f b    and ( ) ( ) ( )f ab f a f b . 

Definition: If R and S are rings and :f R S  is a function, then f is a ring isomorphism if it is 

a ring homomorphism, and it is one-to-one and onto. 

Theorem 51: If R and S are rings, and :f R S  is a ring homomorphism, and if we name the 

additive identities of R and S to be 0R  and 0S  respectively, then (0 ) 0R Sf    

 Theorem 52: If R and S are rings, and :f R S  is a ring homomorphism, and a R , then 

( ) ( )f a f a   . 

Theorem 53: If R and S are rings, and :f R S  is a ring homomorphism, then 

( ( }) { ) | Sf R f x x R   is a subring of S. 
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Theorem 54: If R is a ring and a R  then the set { | }aR ax x R R   is a subring of R and the 

set { | }Ra xa x R R   is a subring of R. 

Theorem 55: Given a ring R, we can adjoin a formal element x to create a ring [ ]R x  of formal 

polynomials with coefficients in R with the following properties: 
 R is a subring of [ ]R x  

 If a R  then ax xa   (note: elements of R commute with x, but they don’t necessarily 
commute with each other) 

 Every element has a unique representation as a polynomial. 

Definition: The degree of a polynomial ]( [)p x R x  is the highest exponent that has a non-zero 

coefficient. 

Theorem 56: If F is a field and ]( [), ( )f g x Fx x such that ( ) 0g x  then there exist unique 

]( [), ( )q r x Fx x  such that ( ) ( ) ( ) ( )f x g x q x r x   and deg( ( )) deg( ( ))r x g x or ( ) 0r x  . 

Definition: If ( ), ( ) [ ]f x g x F x , then ( ) | ( )f x g x  means there exists ]( [)h x F x  such that 

( ) ( ) ( )g x f x h x .  

Definition: If R is a ring with identity, then a monic polynomial in [ ]R x  is a polynomial whose 

leading coefficient is 1. (Note: the leading coefficient is the coefficient of the term with the 
highest power of x) 

Definition: If F is a field, and ( ), ( ) [ ]f x g x F x , then ( )f x  and ( )g x  are associates if 

( ) ( )f x cg x  where c F  and 0c  . 

Theorem 57: If F is a field and ]( [)f Fx x , then ( )f x  has a unique associate which is a monic 

polynomial. 

Definition: If ( ), ( ) [ ]f x g x F x  such that not both of  f  and  g  are 0, then the greatest common 

divisor of  f  and  g  is the monic polynomial of highest degree that divides both ( )f x  and ( )g x . 

Theorem 58: If F is a field, and ( ), ( ) [ ]f x g x F x  such that ( ) 0f x   or ( ) 0g x  , then there is 

a unique greatest common divisor ( ) gcd( ( ), ( ))d x f x g x , and there exist polynomials 

( ), ) [ ](u x v x F x  (not necessarily unique) such that ( ) ( ) ( ) ( ) ( )d x u x f x v x g x    

Definition: Let F be a field and let ]( [)p x F x  be a non-constant polynomial, then ( )p x  is 

irreducible if its only divisors are non-zero constants and its associates. 

*Theorem 59 (factor theorem): If F is a field, a F  and ]( [)f Fx x  then ( ) 0f a  if and 

only if ( ) | ( )x a f x  

Theorem 60: Let F be a field and let ]( [)f x F x  be a non-constant polynomial, then ( )f x  is 

factorable into irreducible polynomials, and that factorization is unique up to associates. 
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Theorem 61 (remainder theorem): If F is a field, a F  and ]( [), ( )f g x Fx x  such that 

deg( ( )) 1g x  and ( ) 0g a  .  Let ]( [)r Fx x   be the remainder polynomial that satisfies  

( ) ( ) ( ) ( )f x g x q x r x   and deg( ( )) deg( ( ))r x g x or ( ) 0r x  .  Then ( )r x is a constant and 

( ) ( )f a r x . 

Theorem 62 (Fundamental Theorem of Algebra): Every polynomial in [ ]x  has a complex 

root (that is, if ]( [)f xx   and deg( ( )) 0f x   then there exists a number a  such that 

( ) 0f a  . 

Theorem 63 (Corollary to the Fundamental Theorem of Algebra): Every polynomial in 
[ ]x  is factorable into degree 1 polynomials. 

 

……………. 

 

Definition: If I R  is a subring of R, and if for any i I  and r R  then ir I  and ri I , then 
I is called an ideal 

Theorem 64: If I is a non-empty subset of R, then I is an ideal if: 

i. I is closed under addition (if ,a b I  then a Ib  ) 

ii. Every element of I  has an additive inverse in I (if a I  then Ia   where 0a a   ) 
iii.  I absorbs elements of R under multiplication: if a I  and r R  then ir I  and ri I   

*Theorem 65: If R is a commutative ring and c R , then }{ |c c RR x x   is an ideal in R. 

Definition: If R is a commutative ring that has a (multiplicative) identity, and c R , then 
}{ |c c RR x x   is a principal ideal of R. This ideal has two standard representations: in 

addition to cR the textbook uses the notation: (c) to represent the principal ideal generated by c. 
This notation is particularly common when talking about principal ideals in a polynomial ring. 

Definition: If I is an ideal in a ring R, and a R  then the coset a RI   is the set: 

| }{a I a Ix x      

Theorem 66: If I is an ideal in a ring R, then every element a R  is in some coset of I, and in 
particular, a a I   

Theorem 67: : If I is an ideal in a ring R, and a I shares an element with b I  then 
a I b I    

Note: The contrapositive of theorem 67 says that if the cosets are not equal, then they are 
disjoint, which means they do not share any elements 

Definition: If I is an ideal in a ring R, and ,a b R  then a is congruent to b modulo I if 

( )b Ia    . We write (mod )a b I  
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Theorem 68: If I is an ideal in a ring R, and a R   then (mod )a a I   

Theorem 69: If I is an ideal in a ring R, and ,a b R  such that (mod )a b I   then (mod )b a I   

Theorem 70: If I is an ideal in a ring R, and , ,a b c R  such that (mod )a b I  and 

(mod )b c I   then (mod )a c I   

Theorem 71: If I is an ideal in a ring R, and a R  then { | and }a I x x R a x     

Theorem 72: If I is an ideal in a ring R, and , , ,a b c d R  such that (mod )a b I  and 

(mod )c d I   then (mod )a c b d I   .  

Note: This is equivalent to: ( ) ( { | } ( )) , I a b Ia I b I a i b j i j         

Theorem 73: If I is an ideal in a ring R, and , , ,a b c d R  such that (mod )a b I  and 

(mod )c d I   then (mod )ac bd I   

Note: This is equivalent to: ( )( ) {( )( | ), } () I ab Ia I b I a i b j i j       

Definition: If I is an ideal in a ring R, and, then the set of cosets consists of all of the cosets of I  

Theorem 74: If I is an ideal in a ring R, then the set of cosets of I is also a ring, where addition 
and multiplication are defined by ( ) ( ) ( )a I b I a b I       and ( )( ) ( )a I b I ab I    . We 

call /R I  the quotient ring of R mod I.  We write / { | }R I a I Ra     
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Theorem 75: If R and S are rings, and :f R S  is a ring homomorphism, then (0 ) 0R Sf   

where 0R is the additive identity in R, and 0S  is the additive identity in S. 

Theorem 76: If R is a ring that has a multiplicative identity 1R , and S is a field whose 

multiplicative identity is 1S , and :f R S  is a ring homomorphism and there is some a R

such that ( ) 0f a  , then (1 ) 1R Sf   

Theorem 77: If R and S are rings, and :f R S  is a ring homomorphism and a R , then 

( ) ( )f a f a    

Theorem 53/78: If R and S are rings, and :f R S  is a ring homomorphism, then 

( ( }) { ) | Sf R f x x R   is a subring of S. 

Definition: The kernel of a function on rings :f R S  is the set of all elements that map to 0: 

ker( ) | ({ ) 0 }SR f xf x    

Theorem 79:  If R and S are rings, and :f R S  is a ring homomorphism, then ker( )f R  is 

an ideal in R.  

Theorem 80 (First Isomorphism Theorem): If R and S are rings, and :f R S  is a surjective 

(onto) ring homomorphism, then / ker( ) SR f  with isomorphism ( ker( )) ( )r f f r    where 

eker( ) / (k r( ))Rr f f  

Theorem 81: If ]( [)f Fx x is an irreducible polynomial with coefficients in the field F, then 

[ ] / ( ( ))F x f x  is a field. 

Definition: If F is a field subfield of  , and   , then )(F   is the smallest subfield of   

that contains both F  and    

Theorem 82: If ]( [)f Fx x  is an irreducible polynomial with coefficients in a field F such that 

F   , and    such that )( 0f   then )[ ] / ( ( )): (F x f x F   defined by 

  ( ) ( ) ( )g x f x g    for every    ) [ ] /) (( ( )g Fx xf f xx   is an isomorphism 


