The two practice problems I asked you to work out at the end of class (due Friday, but not collected) are:

- 1. For $f: \mathbb{Z}_5 \to \mathbb{Z}_8$ such that $f([n]_5) = [n]_8$, prove that f is not a function
- 2. let $g: \mathbb{Z}_5 \to \mathbb{Z}_{10}$ such that $g([n]_5) = [2n]_{10}$, prove that g is a function.

Big Idea

The important understanding to make sense of both of these problems is that $[n]_5 \in \mathbb{Z}_5$ can be written in several ways, so $[2]_5 = [7]_5 = [12]_5 = [17]_5$ are all different ways of writing the same element of \mathbb{Z}_5 . That's because an element of \mathbb{Z}_5 is a set (equivalence class) of integers.

How to start #1

In order for f or g to be a function, the rule has to do the same thing to the equivalence class set of $[n]_5$, no matter how you write it. Because $[2]_5 = [7]_5 = [12]_5 = [17]_5$, f is only a function if $f([2]_5) = f\left([7]_5\right) = f\left([12]_5\right) = f\left([17]_5\right)$. If you use the rule $f([n]_5) = [n]_8$ on the different representations of $[2]_5 = [7]_5 = [12]_5 = [17]_5$, you will find that you get elements in \mathbb{Z}_8 that don't just look different, they are actually in different equivalence classes in \mathbb{Z}_8 . When you're proving something is not a function, you just need one example showing that it doesn't work, so by using the rule for f on two different versions of $[2]_5$, you will probably be able to show it is not a function.

How to start #2.

To prove something is a function, you can't just find one example that it works, you need to use algebra to show that every example works. That means you need a way to write down a generic element of \mathbb{Z}_5 : I'm going to choose $[n]_5 \in \mathbb{Z}_5$, and then you need a way to write down all of the different representations of that equivalence class: $[n]_5 = \{n+5k \mid k \in \mathbb{Z}\}$. I'm going to pick these two representations: $[n+5i]_5$ and $[n+5j]_5$ to be my variable-version names for two ways of writing the equivalence class.

To show that g is a function, you need to show that when you apply the rule $g([n]_5) = [2n]_{10}$ to both of these representations, you get the same element of \mathbb{Z}_{10} , which is the same as saying that their representations are equivalent mod 10. You can start by writing out what happens when you plug the two representations of $[n]_5$ in to g, and then show that they are in the same equivalence class mod 10, or you can start with the definition of equivalence mod 10.

How to finish #1:

This one, as I said above, only needs a single example:

$$f([2]_5) = [2]_8$$
 but $f([7]_5) = [7]_8$

So
$$[2]_5 = [7]_8$$

But
$$f([2]_5) \neq f([7]_8)$$

This shows f is not a function.

How to finish #2:

Let
$$n + 5i$$
, $n + 5j \in [n]_5$

Then

$$g([n+5i]_5) = [2(n+5i)]_{10} = [2n+10i]_{10}$$

And

$$g([n+5j]_5) = [2(n+5j)]_{10} = [2n+10j]_{10}$$

Now,
$$[2n+10i]_{10} = [2n]_{10} + [10i]_{10} = [2n]_{10}$$

And
$$[2n+10j]_{10} = [2n]_{10} + [10j]_{10} = [2n]_{10}$$

So
$$g([n+5i]_5) = g([n+5j]_5)$$

Thus g is a function.

Writing this another way:

$$(2n+10i)-(2n+10j)=10i-10j=10(i-j)$$

So
$$2n+10i \equiv 2n+10j \pmod{n}$$

So
$$[2n+10i]_{10} = [2n+10j]_{10}$$

So
$$g([n+5i]_5) = g([n+5j]_5)$$

Thus \boldsymbol{g} is a function.