Theorem 4 If G is a group and $a,b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$

Theorem 5 If G is a group and $a \in G$ then $(a^{-1})^{-1} = a$

Definition/Notation: If G is a group and $a \in G$ then $a^2 = aa$ and $a^n = \underline{aa...a}$ if n is a positive

integer. $a^n = \underbrace{a^{-1}a^{-1}...a^{-1}}_{\text{n factors}}$ if n is a negative integer and $a^0 = e$ where e is the identity.

Theorem If G is a group and $a \in G$ then $a^n a^m = a^{n+m}$

prove the theorem for the cases:

a) n = 0 or m = 0

a)
$$n = 0$$
 or $m = 0$

b)
$$n > 0$$
 and $m > 0$

c)
$$n > 0$$
 and $m < 0$

d)
$$n < 0$$
 and $m > 0$

e)
$$n < 0$$
 and $m < 0$

$$4^{n+m}$$
 Dsubgroup of $M_2 \langle [\frac{1}{0}, \frac{2}{0}] \rangle$

(2) Subgroup of S_4
(124)

Unless you are specifically asked to explain/prove a property, you may assume that the following examples have been proven to be groups:

 \mathbb{R} = real numbers (with addition) \mathbb{Q} = rational numbers (with addition)

 \mathbb{C} = complex numbers (with addition)

 D_n = dihedral group of degree n (symmetries of a regular n-gon, with operation function composition), for integers n > 3

 S_n = permutation group of degree n = symmetric group of degree n (permutations of n elements, where *n* is a positive integer

$$M_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$$
 = real valued 2x2 matrices (with addition)

Additionally, you may assume that we know that multiplication is associative for $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$ and M_2 , and multiplication is commutative for $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$

Definition: The order of a group is the number of elements in the group.

Definition: In a group G with element $a \in G$, if $a^n = e$ for some integer n > 0, then the element a has finite order. If k is the smallest positive integer such that $a^n = e$, then a has order k. If $a^n \neq e$ for every positive integer n, then a has infinite order.

Definition: In a group G with elements $a, b \in G$, the set $\langle a \rangle G$ is the smallest subgroup of G. that contains a, and (< a, b >) is the smallest subgroup of G that contains both a and b.