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operation matrix multiplication. 

Then { | }nA A n    and { }|nB B n     
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 for all n  (We did not prove this, but we 

could use induction to prove this) 

Define function : Bf A    such that 
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(This definition tells how to map each element of A   to a unique element of B   , so it is a 
function) 
To prove: f is a homomorphism. 
Let ,C D A    
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Hence ( ) ( ) ( )f C f D f CD  for all ,C D A  , and  f is a homomorphism. 

To prove: f is 1-to-1. 
Let ,C D A    

Suppose ( ) ( )f C f D   
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Thus we have proved that if ( ) ( )f C f D  then C D   

Which is equivalent (contrapositive) to saying if C D  then )( ()f C f D   

And f is 1-to-1. 
  



Prove f is onto: 
Let F B    
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So, for any element F B  , there is an element of A that is mapped to F by f. 
Hence f is onto. 
 
This proves f is a 1-to-1, onto homomorphism, so f is an isomorphism, and BA    (

A   and B   are isomorphic). 


