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Abstract Algebra Notes 

Definition A group is a set of elements G  together with a binary operation # that have the 
properties: 

1. Closure: If ,a b G  then #a b G   

2. Associativity: If , ,a b c G  then #( # ) ( # ) #a b c a b c   

3. Identity under #: There is an element e G  such that if a G  then # #a e e a a    

4. Inverses under #: For each a G  there is an element 1a G   such that 
1 1# #a a a a e   . 

As a default, we will use multiplication as the group operation, in which case the above 
properties are written: 

1. Closure: If ,a b G  then ab G   

2. Associativity: If , ,a b c G  then ( ) ( )a bc ab c   

3. Identity: There is an element e G  such that if a G  then ae ea a    

4. Inverses: For each a G  there is an element 1a G   such that 1 1aa a a e   . 

Definition If G is a group, and H G  is a subset of G, such that H is a group, then H is a 
subgroup of G. 

Theorem 1: If G is a group, and H G  is a non-empty subset of G such that  

1. H is closed: if ,a b H  then ab H    

2. The inverse of every element in H is also in H: If a H  then there is an element 1a H   

such that 1 1aa a a e    
Then  H is a subgroup of G. 

prove theorem 1 by explaining why all 4 of the group properties must be true for H. 

Theorem 2: If G is a group, then the identity element e is unique.   

Unique means that e is the only element of G that has the identity property (group: property 3) 

Theorem 3: If G is a group, then every element of G has a unique inverse. 

Theorem 4 If G is a group and ,a b G  then 1 1 1( )ab b a     

Theorem 5 If G is a group and a G  then 1 1( )a a     

Definition/Notation: If G is a group and a G  then 2a aa  and 
n factors

...na aa a  if n is a positive 

integer.  
|n

1 1

| factors

1...na a a a     if n is a negative integer and 0a e  where e is the identity. 
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Theorem 6 If G is a group and a G  then n m n ma a a    

 prove the theorem for the cases: 

a) 0n   or 0m    
b) 0n   and 0m    
c) 0n   and 0m    
d) 0n   and 0m    
e) 0n   and 0m    

Theorem 7: Function composition is associative. 

Theorem 8: The 3D , the set of symmetry transformations of an equilateral triangle, is a group, 

where the group operation is function composition. 

Unless you are specifically asked to prove one of these is a group (eg. Thm 8), you may assume 
that all of these are groups: 

  = complex numbers (with addition)  

nD  = dihedral group of degree n (symmetries of a regular n-gon, with operation function 

composition), for integers 3n    

nS  = permutation group of degree n = symmetric group of degree n (permutations of n elements, 

where n is a positive integer, with operation function composition) 

2 , , ,
a b

M a b c d
c d


      
   

  = real valued 2x2 matrices (with addition) 

Additionally, you may assume that we know that multiplication is associative for , , ,     and 

2M  , and multiplication is commutative for , , ,      

Definition: The order of a group is the number of elements in the group. 

Definition: In a group G with element a G , if na e  for some integer 0n  , then the element 

a has finite order.  If k is the smallest positive integer such that na e , then a has order k. If 
na e  for every positive integer n, then a has infinite order. 

Definition: In a group G with elements ,a b G , the set Ga   is the smallest subgroup of G 

that contains a, and ,a b   is the smallest subgroup of G that contains both a and b. 

Lemma 9: In a group G (with the default multiplicative notation for the binary operation), and 

a G  then }{ |na n a     

Lemma 10: In a group G (with the default multiplicative notation for the binary operation), and 

a G  then { }|na n  is a subgroup of G . 
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Theorem 11: In a group G (with the default multiplicative notation for the binary operation), and 

a G  then }{ |na n a    

Definition: A group G is commutative if for every pair of elements ,a b G , ab ba . A 

commutative group is also called an abelian group.  

Theorem 12: In a group G, with element a G , then a   is an abelian group. 

Definition: For two integers ,n m , the following statements are equivalent: 

 |n m  (say: “n divides m”) 

 m is evenly divisible by n 
 n is a factor of m 
 m nk  for some integer k   

Definition: Two elements, numbers, groups, functions etc. are distinct if they are not equal.  
This is a common word in math, and not specific to Abstract Algebra. 

Theorem 13: If G is a group and a G  such that i ja a  for two distinct integers i j , then a 

has finite order. 

Theorem 14:   If G is a group and a G  has infinite order, then all of the elements na  where 
n   are distinct.   

Definition: Given a group G with operation * and H is a group with operation #, and :f G H  

is a function. The function f is called a homomorphism if it preserves the group operation, 
which means for any ,a b G , ( * ) ( ) # ( )f a b f a f b   

Definition: Given sets S and T, a function :f S T  is 1-to-1 if for every ,a b S , if 

( ) ( )f a f b  then a b .  A 1-to-1 function is called an injection. 

Theorem 15: Given sets S and T, a function :f S T , the following conditions are equivalent: 

 For every ,a b S , if ( ) ( )f a f b  then a b  

 For every ,a b S  if a b  then )( ()f a f b   

 For every t T  the set 1( ) | ( ) }{f t s S f s t    contains at most one element. 

Definition: Given sets S and T, a function :f S T  is onto if for every t T , there exists an 

element s S  such that ( )f s t .  

Theorem 16: Given sets S and T, a function :f S T , the following conditions are equivalent: 

 For every t T , there exists an element s S  such that ( )f s t .  

 For every t T  the set 1( ) | ( ) }{f t s S f s t    contains at least one element. 

Definition: Given groups G and H, and function :f G H , then f is an isomorphism if it is a 

1-to-1 and onto homomorphism. 
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Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest 
element. 

Theorem 17: Let a  and b   (b is a positive integer), then there exist unique integers ,q r  

such that a bq r   and 0 r b    

Definition: Let a and b be integers where not both are zero, then gcd( , )d a b  is the greatest 

common divisor of a and b, which means: 

 |d a  and |d b   

 If |c a  and |c b  then c d   

Note: our textbook writes ( , ) gcd( , )a b a b   

Theorem 18 (1.2): Let a and b be integers where not both are zero, and gcd( , )d a b . There 

exist ,u v  such that d au bv    

Theorem 19 (1.3): Let a and b be integers where not both are zero, and gcd( , )d a b . Then if 

|c a  and |c b  then |c d   

Theorem 20 (1.4): Let , ,a b c  such that |a bc  and gcd( , ) 1a b   then |a c   

Theorem 20.5: Let , ,a b c , and let gcd( , )d a b . Then ax by c   has integer solutions if 

and only if |d c  (pg. 16 # 24) 

Definition: Let p be an integer such that 0, 1p   , then p is prime means: 

Given ,b c , if |p bc  then |p b  or |p c   

Definition: Let p be an integer such that 0, 1p   , then p is irreducible means the only divisors 

of  p  are 1  and p    

Theorem 21: An integer p be an integer such that 0, 1p   is prime if and only of it is 

irreducible. 

Theorem 22 (1.6): Let p be a prime integer and let 1 2| ... np a a a  then p divides at least one of the 

factors ia .   

Theorem 23 (1.7): Every integer n except 0, 1  is a product of primes. 

Theorem 24 (Fundamental Theorem of Arithmetic, 1.8):  If n  and 0, 1n    then n is a 

product of primes, and the prime factorization is unique in the sense that if  
 1 2... rn p p p   and 1 2... sn q q q   

such that all of the ip  and jq  are prime,  

then r s  and the jq  factors can be re-ordered such that i ip q    

(We can use a permutation to write :{1, 2,... } {1, 2,... }f s s  is a permutation, and ( )i f iqp  ) 
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Definition: Let a, b, n be integers, with 0n  , then a is congruent to b modulo n if | ( )n b a . 

This is most often written (mod )a b n .  If it is clear from the context of the problem, that all 

numbers are to be considered mod n, you will sometimes see a b  or a b .  

Theorem 25: Let a, b, n be integers, with 0n  , then 

a) (mod )a a n  

b) If (mod )a b n then (mod )b a n  

c) If (mod )a b n and (mod )b c n , then (mod )a c n  

Definition: Let a, b, n be integers, with 0n  , then the congruence class of a modulo n is the 
set of all integers congruent to a modulo n. Sometimes we write [ ]a  or [ ]na , and the equivalence 

class is defined to be }{ and (mod )| b ab b n  .  

Theorem 26: [ ] [ ]n na c  if and only if (mod )a c n  

Theorem 27: If (mod )a b n and (mod )c d n  then  

a) (mod )a c b d n    

b) (mod )ac bd n  

Definition: The set of all congruence classes modulo n is denoted n , which is called “Z-n” or 

the “integers mod n” or “mod n numbers”.  Elements of n  are sometimes written as [ ]na  or [ ]a  

but usually they are just written a. Each congruence class has a simplest form, which is the 
element of the equivalence class in the range 0 a n  . In most cases, you should give answers 
to questions in n  in simplest form. 

Definition: A ring is a set of elements R  together with two binary operations that are denoted as  
addition (+) and multiplication (or  ) with the properties: 

1) R is closed under addition: if ,a b R then a Rb   

2) Addition is associative: if , ,a b c R  then ( ) ( )a b c a b c      

3) Addition is commutative: if ,a b R  then a b b a    

4) R has an additive identity: there exists an element 0 R such that 0 a a   
5) Every element in R has an additive inverse: if a R then Ra  such that 0a a   
6) R is closed under multiplication: if ,a b R then ab R  

7) Multiplication is associative: if , ,a b c R  then ( ) ( )ab c a bc  

8) Multiplication is distributive over addition: if , ,a b c R  then ( )a b c ab ac   and 

( )b c a ba ca    

Definition: A ring R is a commutative ring if multiplication is commutative.  That is: if 
,a b R then ab ba  

Theorem 28: n  is a commutative ring. 
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Theorem 29: If , ,R    is a ring, then ,R   is an abelian group 

Theorem 29.5: If , ,R    is a ring, and a R  then 0 0 0a a     (hint: 0+0=0) 

Definition: A ring, R, is a ring with identity or a ring with unity if it has a multiplicative 
identity: i.e. If there exists an element 1 R  such that 1 1a a a     for all a R   

Definition: Given a ring R with identity, then an element a R is a unit if it has a multiplicative 

inverse in R: i.e. a R is a unit if there exists an element 1a R   such that 1 1 1a a a a       

Definition: Given a ring R, then an element a R is  zero-divisor if  it is one of a non-zero pair 
of elements whose product is 0: i.e. a R  is a zero-divisor if there is an element b R  such that 

0a   and 0b   and 0ab   or 0ba  . 

Theorem 30: Prove that any element a of a ring R can’t be both a unit and a zero divisor. 

Theorem 31: For any non-zero element na , prove that gcd( , ) 1a n   if and only if a is a unit. 

Theorem 32: Given that 0p   is a prime integer, prove that  every non-zero element of p   is a 

unit. 

Theorem 33: For any non-zero element na , prove that gcd( , ) 1a n   if and only if a is a 

zero-divisor. 

Theorem 34: The additive identity of a ring R is unique. 

Theorem 35: The multiplicative identity of a ring with identity (R) is unique. 

Theorem 36: For any element a of a ring R, the additive inverse of a is unique. 

Theorem 37: For any unit a of a ring R, the multiplicative inverse of a is unique. 

Definition: A commutative ring with identity, R, is an integral domain if it has no zero-divisors 

Definition: A field is a commutative ring with identity, where all of the non-zero elements are 
units. 

Definition: If R is a ring, then a subset S R  is a subring of R if it is a ring (using the same 
operations that are defined for R ). 

Theorem 38: If R is a ring, then a subset S R  is a subring of R if it satisfies the conditions: 

i. S is closed under addition (if ,a b S  then a Sb  ) 

ii. S is closed under multiplication (if ,a b S  then ab S ) 

iii. every element of S has an additive inverse in S (if a S  then Sa   where 0a a   ) 
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Theorem 39: If ,a b R  then ( ) ( )a b ab    and ( ) ( )a b ab     

Theorem 40: If a R  then ( )a a     

Theorem 41: If ,a b R  then ( )a b a b        

Theorem 42: If ,a b R  then ( )( )a b ab     

Definition: Saying that ring R, has the multiplicative cancellation property means: for 
, ,a b c R , if ab ac  or ba ca  then b c   

Theorem 43: A ring R has the multiplicative cancellation property if and only if R has no zero 
divisors. 

Theorem 44:  If S R  and T R  are both subrings of R, then S T  is a subring of R. 

Theorem 45: If R is a ring and a R  then the set { | }aR ax x R R   is a subring of R and the 

set { | }Ra xa x R R   is a subring of R. 

Definition: If R and S are rings and :f R S  is a function and ,a b R , then f is a ring 

homomorphism if ( ) ( ) ( )f a b f a f b    and ( ) ( ) ( )f ab f a f b . 

Definition: If R and S are rings and :f R S  is a function, then f is a ring isomorphism if it is 

a ring homomorphism, and it is one-to-one and onto. 

Theorem 46: If R and S are rings, and :f R S  is a ring homomorphism, and if we name the 

additive identities of R and S to be 0R  and 0S  respectively, then (0 ) 0R Sf    

 Theorem 47: If R and S are rings, and :f R S  is a ring homomorphism, and a R , then 

( ) ( )f a f a   . 

Theorem 48:  If R and S are rings, and :f R S  is a ring homomorphism, then 

( ) { ( ) | }f R Rf x x   is a subring of S. 

Theorem 49: Given a ring R, we can adjoin a formal element x to create a ring [ ]R x  of formal 

polynomials with coefficients in R with the following properties: 

 R is a subring of [ ]R x  

 If a R  then ax xa   (note: elements of R commute with x, but they don’t necessarily 
commute with each other) 

 Every element has a unique representation as a polynomial. 

Definition: The degree of a polynomial ]( [)p x R x  is the highest exponent that has a non-zero 

coefficient. 

Theorem 50: If D is an integral domain, and ( ), ) [ ](f x g x D x , then 

deg( ( ) ( )) deg( ( )) deg( ( ))f x g x f x g x     

Theorem 51: If D is an integral domain, then [ ]D x  is also an integral domain. 
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Theorem 52: If F is a field, then [ ]F x  is an integral domain, and the units in [ ]F x  are the non-

zero constants in F. 

Theorem 53: If F is a field, and ( ), ( ) [ ]f x g x F x  such that ( ) 0g x  , then there exist unique 

polynomials ( )q x  and ( )r x  such that ( ) ( ) ( ) ( )f x g x q x r x   where either 

deg( ( )) deg( ( ))r x g x  or ( ) 0r x  . 

Definition: If F is a field, and ( ), ( ) [ ]f x g x F x , then ( )f x  divides ( )g x ,  or ( )f x  is a factor 

of ( )g x , or ( )g x is a multiple of ( )f x  means that there is an ]( [)h x F x  such that 

( ) ( ) ( )g x f x h x . We write ( ) | ( )f x g x . 

Theorem 54: If F is a field, and ( ), ( ) [ ]f x g x F x  such that ( ) 0f x  , c F  such that 0c  , 

and if ( ) | ( )f x g x  then ( ) | ( )cf x g x   

Definition: If R is a ring with identity, then a monic polynomial in [ ]R x  is a polynomial whose 

leading coefficient is 1. (Note: the leading coefficient of a polynomial is the coefficient of the 
term with the highest exponent of x. 

Definition: If F is a field, and ( ), ( ) [ ]f x g x F x  such that not both of  f  and  g  are 0, then the 

greatest common divisor of  f  and  g   is the monic polynomial of highest degree that divides 
both ( )f x  and ( )g x . 

Theorem 55: If F is a field, and ( ), ( ) [ ]f x g x F x  such that ( ) 0f x   or ( ) 0g x  , then there is 

a unique greatest common divisor ( ) gcd( ( ), ( ))d x f x g x , and there exist polynomials 

( ), ) [ ](u x v x F x  (not necessarily unique) such that ( ) ( ) ( ) ( ) ( )d x u x f x v x g x    

Theorem 56:  If F is a field, and ( ), ( ) [ ]f x g x F x  such that ( ) 0f x   or ( ) 0g x  , then a monic 

polynomial ( )d x  is the greatest common divisor of  f  and  g   if and only if  

 ( ) | ( )d x f x  and ( ) | ( )d x g x   

 If ( ) | ( )c x f x  and ( ) | ( )c x g x  then ( ) | ( )c x d x   

Definition: If F is a field, and ( ), ( ) [ ]f x g x F x , then ( )f x  and ( )g x  are associates if 

( ) ( )f x cg x  where c F  and 0c  . 

Definition: Let F be a field and let ]( [)p x F x  be a non-constant polynomial, then ( )p x  is 

irreducible if its only divisors are non-zero constants and its associates. 

Definition: Let F be a field and let ]( [)p x F x  be a non-constant polynomial, then ( )p x  is 

prime if for any ( ), ) [ ](f x g x F x  such that ( ) | ( ) ( )p x f x g x  then ( ) | ( )p x f x  or ( ) | ( )p x g x   

Theorem 58: Let F be a field and let ]( [)p x F x  be a non-constant polynomial, then ( )p x  is 

prime if and only if it is irreducible. 

Theorem 58: Let F be a field and let ]( [)f x F x  be a non-constant polynomial, then ( )f x  is 

factorable into irreducible polynomials, and that factorization is unique up to associates. 


