1. Fill out the operation table for the permutation group S_3 | $f \circ g$
do first $(g) \rightarrow$
do second $(f) \downarrow$ | $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ | $ \left \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right $ | $ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} $ | $ \left \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right $ | $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ | |---|--|--|--|---|--|--| | $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ | | | | | | | | $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ | | | | | | | | $ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} $ | | | | | | | | $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ | | | | | | | | $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ | | | | | | | | $ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} $ | | | | | | | a. Is S_3 abelian? Give an example of this from your table. b. What is the identity element for S_3 ? c. List the inverses of each of these elements: i. $$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix}$$ ii. $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix}$ iii. $$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix}$$ iv. $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix}$ 2. Write in where each vertex ends after the transformation shown Fill out the operation table for the dihedral group D_3 of rigid transformations of the equilateral triangle | $f \circ g$
do first $(g) \rightarrow$
do second $(f) \downarrow$ | e | r_1 | r_2 | v | и | w | Is D_3 abelian? How do you know? | |---|---|-------|-------|---|---|---|--------------------------------------| | e | | | | | | | What is the inverse of each element? | | r_1 | | | | | | | $e^{-1} = v^{-1} =$ | | r_2 | | | | | | | $r_1^{-1} = u^{-1} =$ | | v | | | | | | | $r_2^{-1} = w^{-1} =$ | | и | | | | | | | | | w | | | | | | | |