Ex. A.9 If n is even then n^2 is even

$$n = 2k$$

$$n^2 = (2k)^2 =$$

Ex. A.11 If
$$x + y > 100$$
 then $x > 50$ or $y > 50$

Ex. A.12 If
$$n^2$$
 is even, then n is even.

Ex. A.13 If n is the sum of the squares of two odd integers, then n is not a perfect square
Ex. A.15 If n is an integer, then n^3-n is even
Hamowark, prove A 2 # 11 either by controdiction or contrologitive
Homework: prove A.3 # 11 either by contradiction or contrapositive. 100. Prove the sum of two odd integers is odd 101. Prove if n is any integer, then n^2+n is even 102. Prove if $xy>100$ and x and y are both positive real numbers, then $x>10$ or $y>10$ 103. Show that $((p \land r) \to q) \land ((p \land \sim r) \to q)$ is logically equivalent to $(p \to q)$ 104. Show that $((p \land \sim a) \to b)$ is logically equivalent to $p \to (a \lor b)$