Multiplication tables in several mods:

mod 3	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

١.					
	mod 4				
ì	×	0	1	2	3
	0	0	0	0	0
l	1	0	1	2	3
	2	0	2	0	2
Į	3	0	3	2	1

mod 5					
×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

mod 6 ×	0	1	2	3	4	5
0	0	0	0	0	0	0
_ 1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

mod 7 ×	0	1	2	3	4	5	6
0	0	0	0	0 0		0	0
1	0	1	2	2 3		5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	_1/	6	4	2
6	0	6	5_	4	3	2	1

mod 8	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

mod 9	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8
2	0	2	4	6	8	1	3	5	7
3	0	3	6	0	3	6	0	3	6 4
4	0	4	8	3	7	2	6	1	5
5	0	5	1	6	2	7	3	8	4
6	0	6	3	0	6	3	0	6	3
7	0	7	5	3	1	8	6	4	2
8	0	8	7	6	5	4	3	2	1

mod 10	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
_ 1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 11	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	Ő	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
(2)	0	-2	4	6	8	10	1	3	5	7	9
3	0	3	6	9	1'	4	7	10	2	5	8
4	0	4	8	. 1	5	9	2	6	10	3	7
5	0	5	10	4	9	3	8	2	7	1	6
6	0	6	1/	7	2	8	3	9	4	10	5
7	0	7	3	10	6	2	9	5	1	8	4
8	0	8	5	2	10	7	4	1	9	6	3
9	0	9	7	5	3	1	10	8	6	4	2
10	0	10	9	8	7	6	5	4	3	2	1

multiplicative inverses

$$2x = 7 \mod 11$$

 $6.2x = 6.7$
 $1.x = 9$

multiplicative inverses are useful.

They exist

mod p

prime = $2 \cdot 3x = 4 \cdot 2 \pmod{5}$ $1 \cdot x = 3$

(mod 7) 3.5x = 2.31. X = 6

2.6x = 3.2(mod 11) 1.x=6

Powers by squaring

$$16^2 = 256 \qquad \frac{256 \times 8.2.}{31}$$

Solve for x
$$5x = 9 \pmod{1}$$
$$3x = 2 \pmod{7}$$
$$8x = 7 \pmod{1}$$

7²³ (mod 31) 12²⁴ (mod 41)
15¹³

Find pow is by squaring. See also pg. 115.