Discrete Math Final Exam Study List, Spring 2017:

About half of the exam will be on graphs and trees. For these problems you should know how to:

- 1. Switch a simple graph (or a simple directed graph) between a dot and line format representation and a matrix representation.
- 2. Prove two graphs are not isomorphic by (specifically!) describing an invariant that is different for the two graphs.
- 3. Prove that two graphs are isomorphic by: telling the map (which vertex of the first graph maps to which vertex of the second), and writing the matrix representation for both graphs in corresponding order.
- 4. Know how many edges K_n has.
- 5. Know how many edges a tree with *n* vertices has.
- 6. Find an Euler circuit or path in a graph or explain how to know that the graph does not have an Euler circuit or path.
- 7. Find a Hamilton circuit in a graph or explain how to know the graph does not have a Hamilton circuit.
- 8. Find a shortest path in a graph using the breadth-first algorithm (both weighted and unweighted problems are possible).
- 9. Find and show the chromatic number of a graph.
- 10. Draw a graph with chromatic number 2, 3, 4 or 5.
- 11. (Find a directed Euler circuit or path in a directed multi-graph, or explain how we know none exists).
- 12. (Turn a graph or multigraph into strongly connected directed graph using the depth first search algorithm, or explain how we know none exists).
- 13. Explain why a graph is or is not:
 - a tree
 - simple
 - multi
 - directed
- 14. Find a spanning tree using the breadth-first algorithm.
- 15. Find a minimal or maximal spanning tree using Prim's (greedy) algorithm
- 16. Find a spanning tree using the depth-first algorithm.

About half of the final exam will be on prior content from the course. In particular, I am considering the following problems:

From the first review:

- Using the PERT Algorithm to show a total time and critical path for a task description (practice: do # 14 or 15 on pg 9) or Follow a written algorithm (see 1.4 and also handout Feb 6)
- Finding a number of ways something can be accomplished (order matters) using multiplication or permutations (see 1.2 # 21, 23)
- Simplifying a formula with permutations using the factorial formula (see 1.2 # 30-32)
- Finding the number of subsets of a set (see 1.3)
- Show steps to find a Venn diagram to represent a set. (2.1)

From the second review:

- Decide whether a relation is (or is not) reflexive, symmetric and transitive, and explain your reasoning. (see 2.2 # 1-12)
- Show how you know that two integers are congruent with a particular mod base. (3.1 # 19-16)
- Compute addition and multiplication in a particular mod base. (3.1 # 17-32)
- Compute exponents in a particular mod base (3.1 # 33-36 and 3.3 # 1-4)

From the third review:

1. Prove by induction that

$$5+8+...+(3n+2)=\frac{n(3n+7)}{2}$$
 or $5+15+45+...+5\cdot 3^{n-1}=\frac{5}{2}(3^n-1)$

- 2. How many 4 element subsets of {a, b, c, d, e, f} are there?
- 3. Pigeonhole principle:
- a. There are 90 widgets that need to be assembled by 8 workers. What is the smallest number that the most efficient worker (the one who assembles the most widgets) might assemble?
- b. There are 4 different toys in different cereal boxes. How many boxes do I need to buy to be sure I will have 3 identical toys?
- **4.** There are 5 flavors of Jolly Ranchers. If I grab 10 Jolly Ranchers at random out of a bowl, how many different combinations could I get?
- **5.** I have a stack of 15 different Pokemon cards. 7 are water type and 8 are fire type. Assume each has a different number of HP.
- a. In how many ways can I choose 5 cards?
- b. In how many ways can I choose 3 water type and 2 fire type cards?
- c. If I choose 5 cards at random, what is the probability that 3 are water type and 2 are fire type?
- d. If I put down 5 cards, one at a time, how many orders are there?
- e. If I put down 5 cards in a row, what is the probability that the first card has the highest HP?
- f. If I put down 5 cards in a row, what is the probability that they are in order of decreasing HP? 1/5!
- **7.** a. I am going to give 15 different Pokemon cards to 4 cub scouts, so scout A gets 6 cards, scout B gets 4 cards, scout C gets 3 cards and scout D gets 2 cards. How many different possible outcomes are there?
- b. What is the probability that scout D gets the cards with the two highest HP?

From the logic and proof review: (expect at least one truth table problem and at least one proof)

1. Turn these logic statements into set statements, and make both the truth table and the Venn diagram:

a.
$$\sim (p \lor q)$$

b.
$$(p \lor q) \land r$$

- **2.** Use truth tables to show that the statement $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology
- **3.** Use truth tables to show that these statements are logically equivalent: $\sim (p \land \sim q)$ and $p \to q$
- **4.** Use truth tables to show these statements are not logically equivalent: $p \rightarrow q$ and $p \rightarrow q$
- **6.** Write proofs for each of these statements:
- a. If a number is the sum of an even number and an odd number, then it is an odd number.
- b. If xy + 2y is odd then x is odd or y is odd
- c. If xy > 25 then x > 5 or y > 5
- d. If n is an integer then $n^2 + 3n$ is even.

From the chapter 9 review:

- 1. Prove by induction that $5 \cdot 3^n 3$ is an explicit formula for the recursively defined function: $S_n = 3S_{n-1} + 6$ where $S_0 = 2$
- 2. Find an explicit formula for the function. Show your work. $S_n = 5S_{n-1} + 3$ where $S_0 = 4$