PERT Algorithm:

Given n tasks, each with a time and preceding tasks list:
e go through the list and
0 write in the first column all tasks that have no preceding tasks
0 write the time next to the task
e repeat until all tasks are recorded, moving over by one column each time:
0 go through the list of tasks that have not been put in the graph yet
= if all of the preceding tasks are already in the graph in previous columns, write the task in the
next column
= write the time next to the task
= draw a line or arrow from each preceding task to the task
e For all the tasks in the first column, write its time next to it again as the time subtotal for that task
e Go through all the tasks in the second column, then all in the third column, etc. until done
0 for each task find the subtotals of its preceding tasks (using the lines/arrows to find the preceding tasks)
and find the maximum of those subtotals
0 Add that maximum subtotal to the time for that task, and record it as the subtotal for that task.
e Go through all of the tasks, and find the one or ones with the maximum subtotal. That maximum subtotal is the
total time for the job.
e Starting with a task that has the maximum subtotal, record that task as the last in a critical path.
e then repeat until you reach a task in the first column:
0 Find the subtotals of the preceding tasks and find the one with the maximum subtotal. Record it as the
prior task in the critical path.

Matching problem: algorithm A:
Given n cities, each of which has listed pilots that requested that city from a total of n pilots
1. For each city (in the order listed)
0 If the city has only one pilot that has requested it, assign that pilot to that city, and remove the pilots
name from the remaining cities.
e repeat step 1 until there are no cities with only a single request
Find a city with a minimum positive number of requests.
0 Randomly assign a pilot who has requested that city to fly to that city and remove that pilot’s name from
the remaining cities
e repeat step 2 until there are no cities with pilots requesting them.
e randomly assign the remaining pilots to the remaining cities.

Matching problem: algorithm B:

e For each pilot in alphabetical order
0 Find the first pilot with a minimum number of city requests
0 Find the first of that pilot’s requested cities that has a minimum number of pilot requests, and assign

that pilot to that city.

0 Remove the pilot and the city from the lists.

e Repeat until no requests remain

e randomly assign the remaining cities to the remaining pilots

Matching problem: algorithm C:
e Sort the cities in ascending order by number of pilots requesting that city.
0 For each city, find a pilot requesting that city with minimum number of city requests.
O Remove the pilot and city from the list(s)
0 If any city has no requests, skip it for this step
e Randomly assign pilots to the remaining cities.



