Set notation and relationships:

Definitions:

- \in "is an element of". $x \in A$ means that x is an element of A. Every set is defined by its elements, and two sets are equal if they have all of the same elements.
- ϕ "the empty set". The set that contains no elements.
- \subseteq "is a subset of". $A \subseteq B$ if every element of A is also an element of B. Note that Every element of A is an element of A so $A \subseteq A$. Note also that ϕ has no elements, so it is a subset of every set.
- U "the universe" or "the universal set". The set of all elements that are relevant for the current problem (often the set of all numbers or all points in the plane).
- | "the number of elements of". |A| is the number of elements in A. Note that $|\phi|=0$ because the empty set does not have any elements.
- \cap "intersection". The intersection of two sets is the set of all of the elements that are in both sets: $x \in A \cap B$ if $x \in A$ and $x \in B$ both
- "union". The union of two sets is the set of all of the elements that are in either set: $x \in A \cup B$ if $x \in A$ or $x \in B$ (or both—"or" when used about sets is always inclusive: one or the other or both).
- "complement". The complement of a set is all of the elements in the Universe that are not in the set: $x \in \overline{A}$ if $x \notin A$
- "minus". A-B is all of the elements that are in A that are not in $B: x \in A-B$ if $x \in A$ but $x \notin B$

Theorems/relationships:

Given sets A, B, C in universal set U

Thm 2.0	Thm 2.1	Thm 2.2 (DeMorgan's laws)
Thm 2.0 a. $A \cup U = U$ b. $A \cap U = A$ c. $A \cup \phi = A$ d. $A \cap \phi = \phi$ e. $A \cup A = A$ f. $A \cap A = A$	Thm. 2.1 a. $A \cup B = B \cup A$ and $A \cap B = B \cap A$ b. $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$ c. $A \cup (B \cap C) = (A \cap B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $= d. A = A \text{(that's a double complement, not an =)}$ e. $A \cup A = U$ f. $A \cap A = \phi$ g. $A \subseteq A \cup B$ and $B \subseteq A \cup B$ h. $A \cap B \subseteq A$ and $A \cap B \subseteq B$	Thm 2.2 (DeMorgan's laws) a. $\overline{A \cup B} = \overline{A} \cap \overline{B}$ b. $\overline{A \cap B} = \overline{A} \cup \overline{B}$
	i. $A - B = A \cap B$	

18. Show $(A-B) \cup (A \cap B) = A$ using theorems and by making Venn diagrams.

Theorem		A		Λ
	$\begin{vmatrix} & & & \\ & A - B \end{vmatrix}$	В	$A \cap R$	ВСС
	A-B.	A		
		В		
	Theorem	Theorem A - B	A-B B	$A-B$ $A \cap B$

19. Show $(A-B) \cap (A \cup B) = A-B$ using theorems and by making Venn diagrams.

Steps	Theorem	
$(A-B)\cap (A\cup B)$		
=	2.1.i	
=	2.1.b (intersection)	ВСС
=	2.1.c (second version)	A
=	2.1.f	
=	2.0.c	$ (\vee) $
=	2.1.a	ВСС
=	2.1.b	A
=	2.0.f	
=	2.1.i	
		B

Homework: Prove each of the following by using theorems and making Venn diagrams

17.
$$A \cap (B-A) = A \cap B$$

21.
$$\overline{A} \cap (A \cup B) = B - A$$

22.
$$(\overline{A-B}) \cap A = B \cap A$$

(hint: step 1 uses thm 2.1.i and step 2 uses thm 2.2.b)