Set notation and relationships:

Definitions:

- \in "is an element of". $x \in A$ means that x is an element of A = Every set is defined by its elements, and two sets are equal if they have all of the same elements.
- ϕ "the empty set". The set that contains no elements.
- \subseteq "is a subset of". $A \subseteq B$ if every element of A is also an element of B. Note that Every element of A is an element of A so $A \subseteq A$. Note also that ϕ has no elements, so it is a subset of every set.
- U "the universe" or "the universal set". The set of all elements that are relevant for the current problem (often the set of all numbers or all points in the plane).
- | | "the number of elements of". | A | is the number of elements in A. Note that $|\phi| = 0$ because the empty set does not have any elements.
- \cap "intersection". The intersection of two sets is the set of all of the elements that are in both sets: $x \in A \cap B$ if $x \in A$ and $x \in B$ both
- "union". The union of two sets is the set of all of the elements that are in either set: $x \in A \cup B$ if $x \in A$ or $x \in B$ (or both—"or" when used about sets is always inclusive: one or the other or both).
- "complement". The complement of a set is all of the elements in the Universe that are not in the set: $x \in \overline{A}$ if $x \notin A$
- "minus". A-B is all of the elements that are in A that are not in $B: x \in A-B$ if $x \in A$ but $x \notin B$

Theorems/relationships:

Given sets A, B, C in universal set U

Thm 2.0	Thm. 2.1	Thm 2.2 (DeMorgan's laws)
a. $A \cup U = U$	a. $A \cup B = B \cup A$ and $A \cap B = B \cap A$	a. $\overline{A \cup B} = \overline{A} \cap \overline{B}$
b. $A \cap U = A$	b. $A \cup (B \cup C) = (A \cup B) \cup C$ and	b. $\overline{A \cap B} = \overline{A \cup B}$
c. $A \cup \phi = A$	$A \cap (B \cap C) = (A \cap B) \cap C$	41
$d. A \cap \phi = \phi$	c. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and	3- 7
e. $A \cup A = A$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
f. $A \cap A = A$	$\begin{vmatrix} = \\ d. A = A \end{vmatrix}$ (that's a double complement, not an =)	
	e. $A \cup \overline{A} = U$	
	f. $A \cap \overline{A} = \phi$	
	g. $A \subseteq A \cup B$ and $B \subseteq A \cup B$	
	h. $A \cap B \subseteq A$ and $A \cap B \subseteq B$	
	i. $A - B = A \cap \overline{B}$	

18. Show $(A-B) \cup (A \cap B) = A$ using theorems and by making Venn diagrams. $(A-B) \cup (A \cap B)$

	Steps	Theorem		A		
	$(A-B)\cup (A\cap B)$	2,16				
	$=(A\cap \overline{B})\cup (A\cap B)$	201.i			-	
	$=A\cap (\overline{B}\cup B)$	2.1.c	A-B	В	$A \cap B$	ВСС
,	$=A\cap U$	2.1.e		A	7	
	= A	2,0 b		1		
				B		

19. Show $(A-B) \cap (A \cup B) = A-B$ using theorems and by making Venn diagrams.

Steps	Theorem	
$(A-B)\cap (A\cup B)$		A-B
= (A)B) n (AUB)	2.1.i	
= AO(BO(AUB))	2.1.b (intersection)	ВСС
= An ((BnA) u (BnB)	2.1.c (second version)	A
= An((BnA) vØ)	2.1.f	AUB
= An (BnA)	2.0.c	
= An (AnB)	2.1.a	ВСС
= (AnA)nB	2.1.b	$A = (A-B) \cap (A$
$=$ $A \cap \overline{R}$	2.0.f	
$= \Delta - R$	2.1.i	
A B		ВСС

Homework: Prove each of the following by using theorems and making Venn diagrams

17.
$$A \cap (B-A) = A \cap B$$

21.
$$\overline{A} \cap (A \cup B) = B - A$$

22.
$$(\overline{A-B}) \cap A = B \cap A$$

(hint: step 1 uses thm 2.1.i and step 2 uses thm 2.2.b)