Modular numbers

Integers can be divided by positive integers, if you allow remainders. You have to be a bit careful with the negative numbers. The key thing is that the quotient q and the remainder r satisfy the equations for $a \div b$:

$$a = bq + r$$
 and $0 \le r < b$

Notice that with this definition r is always positive

Examples

For 25 ÷ 6 :	For -2 ÷ 6 :	For -7 ÷ 6 :	For -25 ÷ 6 :
$25 = 6 \cdot 4 + 1$	$-2 = 6 \cdot (-1) + 4$	$-7 = 6 \cdot (-2) + 5$	$-25 = 6 \cdot (-5) + 5$

There isn't a really common notation for the remainder of a division problem in math, so I'm going to use the one in Excel, the remainder when dividing a by b is mod(a,b), so:

mod(25,6) = 1	mod(-2, 6) = 4	mod(-7,6) = 5	mod(-25.6) = 5
11100(23,0) = 1	11100(-2,0) = 4	11100(-7,0) = 3	Inod(-25,0) = 5

Lets make a function:

One thing we can do is define a function: $f_6(n) = \text{mod}(n, 6)$ Figure out and fill in the domain and range:

$$f_6: \mathbb{Z} \to \{0,1,3,3,4,5\}$$

Is this function one-to-one?

Is this function one-to-one?
No because
$$f_6(-7) = f_6(-25) = 5$$

Is this function onto? $f_6(6) = 0$ $f_6(7)$ $f_6(2) = 2$ $f_6(9) = 3$ $f_6(10) = 4$

Look at pre-images:

There are lots of numbers in the pre-image of any of the possible remainders. These sets of numbers are going to be important, so we're going to name them. Finish these examples and definitions:

$$[0]_6 = f_6 \leftarrow (0) = \{ \dots -12, -6, 0, 6, 12, \dots \} = \{ 6n \mid n \in \mathbb{Z} \}$$
 The set whose elements are these sets is called \mathbb{Z}_6 :
$$[1]_6 = f_6 \leftarrow (1) = \{ \dots -11, -5, 1, 7, 13, \dots \} = \{ 1 + 6n \mid n \in \mathbb{Z} \}$$

$$[2]_6 = f_6 \leftarrow (2) = \{ \dots -10, -4, 2, 8, 14 \} = \{ 2 + 6n \mid n \in \mathbb{Z} \}$$

$$2 + 6n \mid n \in \mathbb{Z} \}$$

$$[3]_6 =$$

$$[4]_6 =$$

$$[5]_6 = f_6^{\leftarrow}(5) = \{...-7, -1, 5, 11, ...\} = \{5 + 6n \mid n \in \mathbb{Z}\}$$

Why didn't I list
$$[6]_6$$
? $[6]_6 = [0]_6$

Do any of these sets overlap?

Are there any integers that aren't in any of these sets?

If we did the same thing but with a function $f_5(n) = \text{mod}(n, 5)$, how many pre-image sets would there be?

Notation: I'm going to call these sets congruence classes, and say that two integers in the same set are congruent.

Is this a function?:

$$g: \mathbb{Z}_6 \times \mathbb{Z}_6 \to \mathbb{Z}_6$$
 such that $g([n]_6, [m]_6) = [a+b]_6$ where $a \in [n]_6$ and $b \in [m]_6$

The question is: is there only one output? There are lots of integers in each **congruence class** $[n]_6$: does it matter which one I pick when I'm doing $g([n]_6,[m]_6) = [a+b]_6$, or do I get the same answer for all of them?

Experiment time:

a. List 3 integers in
$$[4]_6 = [10]_6 = [16]_6$$
 also $4 = 10 = 16 \pmod{6}$

- b. List 3 integers in [5]₆
- c. Add up a bunch of pairs of numbers: one from list a and one from list b. What congruence class is each of the sums in?

Defining addition, subtraction and multiplication:

It turns out (algebra details coming next week) that adding, subtracting and multiplying numbers in equivalence classes always gives outputs in the same equivalence class (one output—it could be a function!) so it makes sense to say:

$$[n]_6 + [m]_6 = [n+m]_6$$

$$[n]_6 - [m]_6 = [n - m]_6$$

$$[n]_6 \cdot [m]_6 = [n \cdot m]_6$$

It's true that $[1]_6 = [7]_6 = [-5]_6$ are the same element of \mathbb{Z}_6 , but we say that the first version (where it's represented by an integer between 1 and 5) is the *simplified* version.

We're going to be kind of lazy, and instead of writing $[4]_6 + [5]_6 = [9]_6 = [3]_6$ we're almost always going to write $4+5\equiv 9\equiv 3\pmod{6}$

Compute and generalize:

1.
$$[2]_6 + [5]_6 = [1]_6$$

2.
$$[4]_6 \cdot [4]_6 = [4]_6$$

1.
$$[2]_6 + [5]_6 = [1]_6$$
 2. $[4]_6 \cdot [4]_6 = [4]_6$ 3. $[2]_6 - [4]_6 = [-2]_6 = [-2+6] = [4]_6$

Compute mod 6:

4.
$$5 \cdot 2 =$$

5.
$$3+3 \equiv$$

6.
$$3 - 2 \cdot 5 \equiv$$

7.
$$[2]_5 + [4]_5 = [6]_5 = [1]_5$$
 8. [

8.
$$[6]_8 + [5]_8 = [3]$$

7.
$$[2]_5 + [4]_5 = [6]_5 = [1]_5$$
 8. $[6]_8 + [5]_8 = [3]_8$ 9. $[5]_9 \cdot [7]_9 = [35]_9 = [8]_9$

Compute mod 7:

12.
$$2-5 \equiv$$

More practice: section 3.1 pg 105 #1-31 odd