Practice with negation, contrapositive and proof:

- 1. Write the negation of each of these statements.
- a. The numbers is a multiple of 6 and multiple of 9
- b. The triangle is isosceles or acute.
- c. The line has a positive y-intercept and is not vertical.
- d. All of the numbers in the set are prime
- e. None of the triangles in the set are obtuse.
- 2. Write the contrapositive of each if-then statement:
- a. If a number in the set is prime, then it is odd
- b. If a quadrilateral in the set has 2 right angles then it does not have 4 equal sides
- c. If point in the set has a positive x coordinate and a positive y coordinate then it lies inside the unit circle.
- d. If a function in the set is a parabola, then the vertex has a positive x-coordinate or a positive y-coordinate.
- 3. Show that this is a tautology:

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Prove each of these statements using algebra assuming that a,b and c are all integers

- 4. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$
- 5. The sum of two even integers is even
- 6. The product of two odd integers is odd
- 7. If a divides b and b divides c then a divides c
- 8. If a divides b and a divides b+2 then $a=\pm 1$ or $a=\pm 2$

In class examples:

- A. The product of an even integer and an odd integer is even
- B. If a divides b and a divides c then a divides bk+cj for any integers j and k
- C. If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$ then $a + b \equiv c + d \pmod{n}$

Definitions and formulas:

 $x \equiv y \pmod{n}$ means that x = y + kn(where k is some integer)

An integer n is even means n = 2k for some integer k

An integer n is odd means n = 2k + 1 for some integer k

n divides m means that n divides evenly into m , and n is a factor of m . Algebraically it means that m=nk for some integer k