A list of different kinds of counting and probability problems:

- How many subsets (total or of size r: 2^n or C(n,r)I.
 - a. Forming committees
 - b. Choosing a group of a given size
- II. What is the smallest size possible for the biggest of m subsets of n objects? |n/m|
 - a. Pigeonhole principle
 - b. Distributing a total to m groups
 - c. Selecting enough total of m types to get a minimum number of the same type
- III. Ordering elements (P(n,r) or multiplication)
 - a. How many orders of a group of distinguishable objects
 - b. How many arrangements of a list or seating chart
- IV. Selection with replacement, ordered (multiplication)
 - a. How many phone numbers?
 - b. How many license plates?
- ٧. Ordering with duplicates? (multiplication, divided by permutations of duplicates)
 - a. How many distinguishable arrangements of PARROT?
- VI. Orders with conditions (multiplication)
 - a. Seating order if the first 2 are F and the last 3 are male?
 - b. Seating order if the first 2 are F or the last 3 are male?
 - c. How many ordered sets of 8 cards if the first card is a heart and the last 2 cards are diamonds?
- Choosing a total amount from different types of identical objects (C(n+t-1,t-1)=C(n+t-1,n)VII.
 - a. Boxes of donuts
 - b. Bags of candy/cookies/bagels
 - c. Boxes of T-shirts of colors/sizes
- VIII. Probabilities (most of the above, but generally not VII)
 - a. Subsets (I): probability that 3 counts are heads, or a committee has 2 F
 - b. Orders with conditions (probability that first card is a heart, or all cards are in order)
 - c. Orders with duplicates (probability that the repeated letters are together)

Answers to review problems

b.
$$C(6,4)$$

26. There are 5 flavors of Jolly Ranchers: Grape, Apple, Watermelon, Cherry and Blue Raspberry

a.
$$C(14,4) = C(14,10)$$

b.
$$5/5^4 = 1/5^3$$

b.
$$5/5^4 = 1/5^3$$
 c. $(5 \cdot 4 \cdot 3 \cdot 2)/5^4 = 24/125$ d. $(1 \cdot 5 \cdot 1 \cdot 1)/5^4 = 1/5^3$

d.
$$(1.5.1.1)/5^4 = 1/5^3$$

e.
$$(1.5.5.5+5.5.1.1-1.5.1.1)/5^4 = 29/125$$
 f. 11

27. a.
$$C(15,5)$$
 b. $C(7,3) \cdot C(8,2)$ c. $C(7,3) \cdot C(8,2) / C(15,5)$ d. 5!

e.
$$(1 \cdot 4 \cdot 3 \cdot 2 \cdot 1) / (5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) = 1/5$$
 f. $1/5!$

28. a.
$$\frac{13!}{2! \cdot 4! \cdot 2!} = 64,864,800$$
 b. $\frac{40,320}{64,864,800} = \frac{8! \cdot 2! \cdot 4! \cdot 2!}{13!}$