Functions: one-to-one, onto, composition

one-to-one:

A function is one-to-one if every element in the range is mapped to by only one element in the domain:

$f: \mathbb{R} \to \mathbb{R}$ such that	$g(x): \mathbb{R} \to \mathbb{R}$ such that	$h:C^1(\mathbb{R})\to\mathbb{R}$ such that	$k:\mathbb{R} \to \mathbb{R} \times \mathbb{R}$ such that
$f(x) = x^3$ is one-to one	$g(x) = x^3 - x$ is not one-	h(f) = f(0) is a	k(x) = (x, 2x) is a one-
because each real	to-one because	function but not a one-to-	to-one function. There are no elements in $\mathbb{R} \times \mathbb{R}$
number <i>y</i> has only one pre-image (one number	g(0) = 0 and $g(1) = 0and g(-1) = 0$	one function. Recall $C^1(\mathbb{R})$ is differentiable	that have more than one
whose cube is y)	8(1)	functions. Different	number in their pre- image (though some have
		functions can have the	no numbers in their pre-
		same y-intercept.	image)

onto:

A function is onto if every element in the codomain is an element is mapped to by something in the domain,

$f: \mathbb{R} \to \mathbb{R}$ such that	$g:\mathbb{R} o \mathbb{R}$ such that	$h:C^1(\mathbb{R}) \to \mathbb{R}$ such that	$k:\mathbb{R} \to \mathbb{R} \times \mathbb{R}$ such that
$f(x) = x^3$ is onto, because every real number is in the codomain (is mapped to by some number)	$g(x) = x^2$ is not onto, because there are no real numbers (in the domain) that map to -1. We say: g maps \mathbb{R} onto \mathbb{R}	h(f)=f(0) is onto. Every real number is mapped to by a function. For example, $c\in\mathbb{R}$ is mapped to by: $f_c(x)=x+c\in C^1(\mathbb{R})$ because $h(f_c)=f_c(0)=c$	$k(x)=(x,2x)$ is not an onto function. The element $(1,1)\in\mathbb{R}\times\mathbb{R}$ is not the image of any real number.

composition:

Recall that functions can be composed if it makes sense for the functions

Given functions $f:\mathbb{R}\to\mathbb{R}$ such that f(x)=3x+1 and $g:\mathbb{R}\to\mathbb{R}$ such that $g(x)=x^2$, the functions can be composed in either order: $f\circ g(x)=f(g(x))=3(x^2)+1$ It would make sense to compose in this order: $h\circ k(x,y)=g(f(x))=(3x+1)^2$ But it wouldn't work to compose in the opposite order because if you plug (x,y) into h first, you get a real number, not an ordered pair, and you can't use the function k on a real number.

Practice and thinking problems:

- 1. Fill in the blanks to explain what a one-to-one function and an onto function are:
- a. For a one-to-one function, every element in the codomain has _____or___ points in its pre-image
- b. For an onto function, every element in the codomain has _____or___ points in its pre-image

Functions to use in problems 2 - 4

$$f: \mathbb{Z} \to \mathbb{R}$$
 such that $f(x) = \frac{x}{2}$

$$g(x) = \mathbb{R} \to \mathbb{R}$$
 such that $g(x) = \sqrt[3]{x}$

$$h: \mathbb{R}^2 \to \mathbb{R}^2$$
 such that $h(x, y) = (y, 2x)$

$$k: \mathbb{R}^2 \to \mathbb{R}$$
 such that $k(x, y) = \sqrt{x^2 + y^2}$

$$F: \mathbb{R} \to \mathbb{R}^2$$
 such that $F(x) = (x, 2)$

- 2. For each of the functions, tell whether it is one-to-one and whether it is onto.
- 3. For each of these possible function compositions:
 - if it makes sense, write the formula for the composition
 - if it doesn't make sense, explain why,
- a. $f \circ g$
- b. $g \circ f$
- c. $f \circ h$
- d. $h \circ k$
- e. $k \circ h$
- f. $g \circ k$
- g. $k \circ g$
- 4. Find two examples of a function composition that uses F as one of the two functions.