Write the contrapositive of each of these statements (use deMorgan's laws on 2-5)

- 1. $p \rightarrow \sim q$
- 2. $p \rightarrow (q \lor r)$
- 3. $(p \lor q) \rightarrow r$
- 4. $p \rightarrow (q \land r)$
- 5. $(p \land q) \rightarrow r$

For each statement, circle the statement that is logically equivalent:

6. If a quadrilateral has 4 equal sides, then its diagonals are perpendicular

- a) If a quadrilateral does not have 4 equal sides, then its diagonals are not perpendicular
- b) If a quadrilateral has perpendicular diagonals, then it has 4 equal sides
- c) If a quadrilateral does not have perpendicular diagonals, then it does not have 4 equal sides.

7. For the case where a transversal line falls on two other lines, and a pair of corresponding angles is chosen:

If the corresponding angles are equal, then the two lines are parallel

- a) If the two lines are not parallel, then the corresponding angles are not equal
- b) If the two lines are parallel, then the corresponding angles are equal
- c) If the corresponding angles are not equal, then the two lines are not parallel.

8. If an R-set is finite, then every element is a unit or a zero divisor.

- a) If every element of an R-set is not a unit and not a zero divisor then the R-set is not finite.
- b) If every element of an R-set is not a unit or not a zero divisor then the R-set is not finite.
- c) If some element of an R-set is not a unit and not a zero divisor then the R-set is not finite.
- d) If some element of an R-set is not a unit or not a zero divisor then the R-set is not finite.

Prove each of these statements by using a contrapositive argument (assume $\sim q$ and prove $\sim p$)

- 9. If xy > 100 then x > 10 or y > 10
- 10. If n^2 is odd then n is odd.
- 11. If $n^2 + 4x + 3$ is even, then n is odd