Math 236 Test 1 review

- 1. List an element and a subset of each of these sets:
- a. $C^1(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable} \}$
- b. $C^1(\mathbb{R}) \times \mathbb{Z}$

c. $2^{\mathbb{Z}}$

- d. $E = \{\{(x, y) \in \mathbb{R}^2 \mid (ax)^2 + (by)^2 = 1\} \mid a, b \in \mathbb{R}\}$
- 2. For each of these statements, tell whether it is true or false. If it is false, tell why.
- a. $\{0.5, \sqrt{2}\} \in 2^{\mathbb{R}}$ b. $\{0.5, \sqrt{2}\} \in \mathbb{R} \times \mathbb{R}$ c. $\{0.5, \sqrt{2}\} \subseteq 2^{\mathbb{R}}$ d. $\{0.5, \sqrt{2}\} \in 2^{\mathbb{Q}}$
- 3. Tell a domain and a codomain that would make sense for each function:
- a. f(x, y, z) = (x, y + z) b. g(a+bi) = b c. F(f(x), a) = f'(a)
- 4. For the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(x, y) = (y, 2x)
- Find the images: f(3,1) and $f^{\rightarrow}(\{(x,y) \in \mathbb{R}^2 \mid y = x^2\})$
- Find the pre-images: $f^{\leftarrow}(5,2)$ and $f^{\leftarrow}\{(a,b) \in \mathbb{R}^2 \mid b=4a+1\}$
- 5. What has to be true about functions f and g in order for $f \circ g$ to make sense?
- 6. For each function, tell whether it is one-to-one and whether it is onto, and explain why or why not.

a. f : S	$S \to T$	such that
S	1	T
a	ı —	→ 1
b	' \	▼ ²
C	. /	3
		4

- b. $L = \{ f(x) = ax + b \mid a, b \in \mathbb{R} \}$ is the set of degree 1 polynomials $H = \{g(x) = c \mid c \in \mathbb{R}\}$ is the set of degree 0 polynomials $F: L \to H$ such that F(f(x)) = f'(x)
- c. $g: \mathbb{Z} \to \mathbb{Z}_8$ such $| d.h: \mathbb{R}^2 \to \mathbb{R}^2$ such that $g(n) = [n]_{g}$
 - $h(x, y) = (2 + x, 2^y)$
- 7. What properties need to be satisfied by a function f for it to be invertible?
- 8. Find the inverse function for each of these functions:

a. $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that
f(x,y) = (2y, x+y)

- b. $g: L \to \mathbb{R}^2$ for
- $L = \{ax + b \mid a, b \in \mathbb{R}\}$

Such that g(ax+b) = (b, a+b)

- c. $h: \mathbb{R} \to (0, \infty)$ such that $h(x) = 2^x$
- 9. Sketch the Venn diagram to show the following set relationships.
- a. $(A \cup B) \cap C$

- b. $A \cup \overline{B}$ c. $\overline{A \cap B}$ d. $A \cap (\overline{B \cup C})$
- 10. Make truth tables for each of these, and tell which, if any, are equivalent:

- a. $p \to (q \land r)$ b. $(\sim q) \land (\sim r) \to \sim p$ c. $\sim (p \land (\sim (q \land r)))$ d. $((\sim q) \lor (\sim r)) \land p$

- 11. Write the negation of each statement:
- a. Each point in the set lies above the x-axis
- b. No function in the set is a polynomial
- c. All of the dice rolled the same number
- d. The numbers in the set are both positive and even
- e. The numbers in the set are positive or even.

- 12. Write the contrapositive of each statement:
- a. If a monster is a grue, then it is not happy.
- b. If a polygon is starlike, then it is both compact and simplicial.
- c. If a number is constructible or solvable then it is algebraic.
- 13-14: for each statement, circle the equivalent statements:
- 13. If it is a square, then it is a rectangle. (2 correct answers)
 - a. All squares are rectangles
 - b. All rectangles are squares
 - c. Some squares are rectangles
 - d. All non-rectangles are non-squares
 - e. All non-squares are non-rectangles
- 14. Every convergent sequence is Cauchy and bounded (2 maybe 3 correct answers)
 - a. If a sequence is Cauchy then it is convergent and bounded
 - b. If a sequence is bounded, then it is Cauchy and convergent
 - c. If a sequence is convergent then it is Cauchy and bounded
 - d. If a sequence is not Cauchy or not bounded then it is not convergent
 - e. If a sequence is both not Cauchy and not bounded then it is not convergent
 - f. If a sequence is not both Cauchy and bounded then it is not convergent
- 15-18: Prove each statement
- 15. If k divides n and $a \equiv b \pmod{n}$ then $a \equiv b \pmod{k}$
- 16. The sum of an even integer and an odd integer is odd.
- 17. If a = bc + r and d divides both a and b then d divides r
- 18. If x + y > 50 then x > 10 or y > 40

Definitions and formulas:

 $x \equiv y \pmod{n}$ means that x = y + kn (where k is some integer)

An integer n is even means n=2k for some integer k

An integer n is odd means n = 2k + 1 for some integer k

n divides m means that n divides evenly into m , and n is a factor of m . Algebraically it means that m=nk for some integer k