Finding inverse functions

If a function has an inverse, then you can define the inverse in a really un-helpful way:

$$f^{-1}(y) = x$$
 such that $f(x) = y$

If f is onto, then we know that there is at least one such x, and if the function is one-to-one then we know there is only one such $\,x$, and so $\,f^{-\mathrm{l}}\,$ exists and is a function.

On the other hand, it would be nice to get a more helpful definition for the inverse function.

Examples:

 $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = (x-1)^3$

For y in the codomain, we want $f^{-1}(y) = x$ such that f(x) = y

So, we make the following equation and solve for x:

$$(x-1)^3 = y$$

 $f^{-1}: \mathbb{R} \to \mathbb{R}$ such that

$$(x-1) = \sqrt[3]{y}$$

 $(x-1) = \sqrt[3]{y}$ so we write $f^{-1}(y) = \sqrt[3]{y} + 1$ or

$$x = \sqrt[3]{y} + 1$$

$$f^{-1}(x) = \sqrt[3]{x} + 1$$

 $x = \sqrt[3]{y} + 1$ $f^{-1}(x) = \sqrt[3]{x} + 1$ $g: \mathbb{R}^2 \to \mathbb{R}^2$ such that g(x, y) = (2y, x + 3)

For (a,b) in the codomain, we want $g^{-1}(a,b) = (x,y)$ such that g(x, y) = (a, b)

So, we make the following equation and solve for (x, y):

$$(2v, x+3) = (a,b)$$

$$2y = a \Rightarrow y = a/2$$

$$x+3=b \implies x=b-3$$

So we write the inverse function as:

$$g^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$
 such that

$$g^{-1}(a,b) = (b-3,a/2)$$
 or $g^{-1}(x,y) = (y-3,x/2)$

Define the following notation:

 $\ell_b = \{(x, x+b) \mid x \in \mathbb{R}\}$ will denote the subset of \mathbb{R}^2 that is a line with slope 1 and

v-intercept b.

Let $L_1 = \{\ell_b \mid b \in \mathbb{R}\}$

Our function is:

 $h: L_1 \to \mathbb{R}$ such that $h(\ell_b) = 4 + b$

For y in the codomain, we want

 $h^{-1}(y) = \ell_h$ such that $h(\ell_h) = y$

So, make the equation, and solve for b:

$$b+4=y$$

$$b = y - 4$$

We write the inverse function as:

$$h^{-1}: \mathbb{R} \to L_1$$
 such that

$$h^{-1}(y) = \ell_{y-4}$$

Practice:

 $g^{-1}(a,b) = (b-3,a/2) \text{ or } g^{-1}(x,y) = (y-3,x/2)$ of it was h: (0,1) \rightarrow [1, ∞) h(x) = $\frac{1}{x}$, then h⁻¹: [1, ∞) \rightarrow (0,1] 1-1(x)===

1.
$$f:[0,\infty) \to [0,\infty)$$
 such that $f(x) = \sqrt{x}$

Find inverse functions for:

1.
$$f:[0,\infty)\to[0,\infty)$$
 such that $f(x)=\sqrt{x}$

2. $g:\mathbb{R}^2\to\mathbb{R}^2$ such that $g(x,y)=(-y,x+2)$ $g^{-1}(a,b)=(b-2,-a)$ $g^{-1}:\mathbb{R}^2\to\mathbb{R}^2$

3.
$$h:(0,1] \to [0,\infty)$$
 such that $h(x) = \frac{1}{x}$ No inverse function because h is not onto (h' not defined for $x \in L_{0,1}$)

4. Define: $C(O,r) = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}$ be the circle with center at the origin and radius rLet $Cir = \{C(O,r) | r \in (0,\infty)\}$

Find the inverse function of $k:(0,\infty)\to Cir$ such that k(r)=C(O,r)