

Discrete Math Final Exam Study List, Spring 2018: Answers to some problems

- 2a. Not isomorphic: the top graph has two 3-cycles (ABF and CDE), and the bottom graph has no 3-cycles
- 2a. Isomorphic: $M \rightarrow W N \rightarrow V O \rightarrow T P \rightarrow U Q \rightarrow S R \rightarrow X$
- 3. Know how many edges K_n has. n(n-1)/2
- 4. Know how many edges a tree with n vertices has. n-1

I mis-labelled. The "4" graphs were intended for Euler paths, and the 5 graphs were intended for Hamiltonian circuits

- There are 9 vertices and 14 edges. f has degree 5, so 3 edges adjacent to can't be used (14-3=11 edges)
- b has degree 4, so 2 edges next to b can't be used (11-2=9)
- chas degree 3 (no overlap in the edges), so 1 edge can't be used Subtracting from the total edges, we find 8 (or fewer) edges can be used, which is not enough for a Hamiltonian circuit

- 18. Every convergent sequence is Cauchy and bounded
 - a. If a sequence is Cauchy then it is convergent and bounded
 - b. If a sequence is convergent then it is Cauchy and bounded
 - c. If a sequence is not convergent then it is not Cauchy or not bounded.
 - d. If a sequence is not Cauchy or not bounded then it is not convergent
 - e. If a sequence is both not Cauchy and not bounded then it is not convergent
 - f. If a sequence is not both Cauchy and bounded then it is not convergent
- 21. For the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that $f(x, y) = (x + y, x^2)$

Find the image: $f(3,4) = (3+4,3^2) = (7,9)$ and the pre-image: f(5,4)

To find the pre-image, set: $f(x, y) = (x + y, x^2) = (5, 4)$ so x + y = 5 and $x^2 = 4$ Because $x^2 = 4$, $x = \pm 2$ If x = 2 then 2 + y = 5 so y = 3. If x = -2 then -2 + y = 5 so y = 7. The pre-image is $\{(2,3), (-2,7)\}$

22. For each of the following, tell if it is a. a function, b. one-to-one, c. onto

A. $f: S \to T$ such that	B $f: S \to T$ such that	C. $f: S \to T$ such that
S T	S T	S T
<i>a</i> → 1	<i>a</i> → 1	<i>a</i> → 1
<i>b</i>	<i>b</i> b	<i>b</i> 2
<i>c</i> 3	c \ \ \ 3	<i>c</i> 3
4	4	d

A. is a 1-to-1 function, and is not onto; B. is not a function (it is a 1-to-1, onto relation) C. is an onto function that is not 1-to-1.

- 23. Compute: a. $4 \times 5 \equiv 6 \pmod{7}$ b. $2 8 \equiv 4 \pmod{10}$ c. $6 \times 4 + 7 \equiv 4 \pmod{9}$