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Definition/formula of derivative: 
Geometrically a derivative is the slope of a tangent line. 
The function is ( )f x . We want the derivative at the value x.  The number x h  is h distance from x. 
 

The point at x is ( , ( ))x f x   The point at x h  is: ( , )   
 

The slope between these two points is:     
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      

 

If we want the slope of a tangent line, then we want the distance between the x-coordinates very small.  That 
distance is h, so we use the limit: 
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The derivative of ex 
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factor using exponent rules Substitute for one of the e's using the defn
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e from compound interest 
Finding interest compounded n times in 1 year at an 
annual rate of r: 
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How can I move r to somewhere more convenient? 
Substitute: 
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So: 
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so if n    then x    
Substituting in for n and r, we get 
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So, finally we get: 
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Fill in 
exponent 

Another useful form for defining e: 
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Substitute 
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and if x   then h    
 
 
Making those substitutions, we get the 
form: 
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So we can use 
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